Today there was a magnitude M 7.4 earthquake near the border of Chile and Bolivia.
https://earthquake.usgs.gov/earthquakes/eventpage/us7000n05d/executive
https://www.emsc-csem.org/Earthquake_information/earthquake.php?id=1684754
It reminded me of an earthquake last month along the coast of Peru. I started working on a report and will follow up on that soon.
https://earthquake.usgs.gov/earthquakes/eventpage/us6000n8tq/executive
Today’s M 7.4 earthquake was projected by the USGS to have a 30% chance of between 10 and 100 fatalities. Hopefully this is an overestimate.
There is also projected to be significant infrastructural damage. Read the PAGER alert page on the USGS earthquake event page for more information.
This region of Earth is dominated by processes related to a convergent plate boundary, the subduction zone that forms the Peru-Chile deep sea trench.
Here, the megathrust subduction zone is composed of the oceanic Nazca plate diving to the east beneath the continental South America plate.
The largest magnitude earthquakes in the world are along subduction zone earthquakes that slip along the plate interface. The recent earthquake in Peru was such an subduction zone interface event.
Today’s M 7.4 earthquake was, instead, along a fault within the Nazca plate (called a slab earthquake). I present a schematic cross section in the poster and further below in this report, showing where these two types of earthquakes happen.
I am up late and will fill out the rest of this earthquake tomorrow.
Below is my interpretive poster for this earthquake
- I plot the seismicity from the past month, with diameter representing magnitude (see legend). I include earthquake epicenters from 1924-2024 with magnitudes M ≥ 3.0 in one version.
- I plot the USGS fault plane solutions (moment tensors in blue and focal mechanisms in orange), possibly in addition to some relevant historic earthquakes.
- A review of the basic base map variations and data that I use for the interpretive posters can be found on the Earthquake Reports page. I have improved these posters over time and some of this background information applies to the older posters.
- Some basic fundamentals of earthquake geology and plate tectonics can be found on the Earthquake Plate Tectonic Fundamentals page.
- In the upper left corner is a large scale plate tectonic map showing the major plate boundary faults.
- To the below is a cross section, cutting into the Earth. Earthquakes that are along the profile C-C’ (in blue on the map) are included in this cross section. I also placed a blue line on the main map in the general location of this cross section. I placed a yellow star in the general location of the M=6.8 earthquake (same for the other inset figures).
- In the center, I include a schematic cross section of the subduction zone. This shows where earthquakes may occur, generally. There are subduction zone megathrust earthquakes (the largest of magnitude), crustal earthquakes, slab earthquakes, and outer rise earthquakes.
- In the upper right corner is a pair of maps that show the landslide probability (left) and the liquefaction susceptibility (right) for this M 7.4 earthquake. I spend more time describing these types of data here. Read more about these maps here.
- In the lower right corner I plot the USGS modeled intensity (Modified Mercalli Intensity scale, MMI) and the USGS “Did You Feel It?” observations (labeled in yellow). Above the map is a plot showing these same data plotted relative to distance from the earthquake. Read more about what these data sets are and what they represent in the report here.
- To the left of the intensity map is a map that shows the relative seismic hazard for this plate boundary (Rhea et al., 2010). I plot the M 7.4 earthquake as a blue star.< The numbers (“80”) indicate the rate at which the Nazca Plate is subducting beneath South America. 80 mm/yr = 3 in/yr.
I include some inset figures. Some of the same figures are located in different places on the larger scale map below.
Other Report Pages
USGS Historic Seismicity
- Here is a poster that shows the significant earthquakes along this plate boundary. Note how there are earthquakes in the Nazca plate associated with the 2010 and 2015 megathrust subduction zone earthquakes. These are triggered earthquakes along the outer rise, not additional subduction zone earthquakes.
- In the lower right corner is a figure from Beck (1998) that shows the spatial extent of the known earthquakes. I added the extent of the 2015 and 2010 earthquakes as green arrows.
- In the upper right corner is an excellent figure from Horton (2018) that shows the plate tectonic setting for this area.
- Here is an animation from IRIS that reviews the tectonics of the Peru-Chile subduction zone. For the animation, first is a screen shot and below that is the embedded video. This animation is from IRIS. Written and directed by Robert F. Butler, University of Portland. Animation and Graphics: Jenda Johnson, geologist. Consultant: Susan Beck, University or Arizona. Narration: Elayne Shapiro, University of Portland.
- Here is a download link for the embedded video below (34 MB mp4)
- This is the Hu et al. (2016) tectonic map. Note the slab contours and how they help us understand the shape of the downgoing Nazca plate.
- Here is a more detailed tectonic map from Wagner and Okal (2019) that shows seismicity plotted relative to depth (color). The slab contours are also plotted.
- Here is the overview figure from Horton, 2018.
- Here is the seismicity map and space time diagram from Métois et al. (2016). The subduction zone fault in the region of Coquimbo, Chile changes geometry, probably because of the Juan Fernandez Ridge (this structure controls the shape of the subduction zone). This figure shows a map and cross section for two parts of the subduction zone (Marot et al., 2014). Note how the subduction zone flattens out with depth here. The M=6.7 quake was shallower than this, but the shape of the downgoing slab does affect the amount of slab pull (tension in the down-dip direction) is exerted along the plate.
- This figure is the 3 panel figure in the interpretive poster showing how seismicity is distributed along the margin, how historic earthquake slip was distributed, and how the fault may be locked (or slipping) along the megathrust fault.
- This is the fault locking figure from Saillard et al. (2017), showing the percent coupling (how much of the plate convergence contributes to deformation of the plate boundary, which may tell us places on the fault that might slip during an earthquake. We are still learning about why this is important and what it means.
- The following figures from Leyton et al. (2009) are great analogies, showing examples of interplate earthquakes (e.g. subduction zone megathrust events) and intraplate earthquakes (e.g. slab quakes, or events within the downgoing plate). The first figures are maps showing these earthquakes, then there are some seismicity cross sections.
- Here are 2 cross sections showing the earthquakes plotted in the maps above (Leyton et al., 2009).
- The Goes et al. (2017) paper presents an excellent review of the various forces and earthquake types along subduction zones globally. This paper is open source and free to download. Below are some summary figures.
- This shows the general relations between various forces exerted on a subducting slab.
- Here is a plot showing their summary of observations for various subduction zones globally.
Some Relevant Discussion and Figures
Geological setting of South America with depth contours of slab 1.0 (Hayes et al., 2012)indicated by thin black lines, subducting oceanic plateaus translucent gray and continental cratons translucent white. The major flat slabs in South America are outlined with thick black lines. The locations of oceanic plateaus, cratons and flat slabs are modified from Gutscher et al.(2000), Loewy et al.(2004)and Ramos and Folguera (2009), respectively. The present-day plate motion is shown as black arrows. Tooth-shaped line represents the South American trench. Seafloor ages to the west of South America are shown with colorful lines with numbers indicating the age in Ma.
Map of South American seismicity and Holocene volcanism. Red triangles indicate Holocene volcanism from the Global Volcanism Project (2013). Circles indicate earthquakes from Jan 1990 to Jan 2015 listed in the Reviewed International Seismological Centre On-line Bulletin (2015) with magnitudes > 4 and depths > 70 km. Orange box shows Pucallpa nest described in this study. Yellow boxes show other nests: the Bucaramanga nest in Colombia and the Pipanaco nest in Argentina. The faded black lines show slab contours from Slab 2.0 (Hayes et al., 2018). The faded blue lines show slab contours from Cahill and Isacks (1992). The black arrow offshore shows relative Nazca-South America plate motion from Altamimi et al. (2016).
Maps of (A) tectonic framework, (B) topography, and (C) sedimentary basin configuration of South America. (A) Map of plate boundaries, Andean magmatic arc (including the northern, central, and southern volcanic zones), regions of flat slab subduction, modern stress orientations from earthquake focal mechanisms, eastern front of Andean fold-thrust belt, and key segments of the retroarc foreland basin system. Plate velocities are shown relative to stable South American plate (DeMets et al., 2010). (B) DEM topographic map showing the Andes mountains and adjacent foreland region, including the Amazon, Parana, Orinoco, and Magdalena (Mag) river systems. (C) Map of Andean retroarc basins, showing isopach thicknesses (in km) of Cretaceous-Cenozoic basin fill, forebulge axis (from Chase et al., 2009), and locations of 13 sites (8 foreland basins, 5 hinterland basins) considered in this synthesis
Left estimated extent of large historical or instrumental ruptures along the Chilean margin adapted from ME´ TOIS et al. (2012). Gray stars mark major intra-slab events. The recent Mw[8 earthquakes are indicated in red. Gray shaded areas correspond to LCZs defined in Fig. 3. Right seismicity recorded by the Centro Sismologico Nacional (CSN) during
interseismic period, color-coded depending on the event’s depth. Three zones have been defined to avoid including aftershocks and preshocks associated with major events: (1) in North Chile, we plot the seismicity from 2008 to january 2014, i.e., between the Tocopilla and Iquique earthquakes; (2) in Central Chile, we plot the seismicity on the entire 2000–2014 period; (3) in South-Central Chile, we selected events that occurred between 2000 and 2010, i.e., before the Maule earthquake.
a Histogram depicts the rate of Mw>3 earthquakes registered by the CSN catalog during the interseismic period defined for each zone (see Fig. 2) on the subduction interface, on 0.2° of latitude sliding windows. Stars are swarm-like sequences detected by HOLTKAMP et al. (2011) depending on their occurrence date. Swarms located in the Iquique LCZ and Camarones segment are from RUIZ et al. (2014). Empty squares are significant intraplate earthquakes. b Red curve variations of the average coupling coefficient on the first 60 km of depth calculated on 0.2° of latitude sliding windows for our best model including an Andean sliver motion. Dashed pink curves are alternative models with different smoothing options that fit the data with nRMS better than 2 (see supplementary figure 6): the pink shaded envelope around our best model stands for the variability of the coupling along strike. Green curves coseismic distribution for Maule (VIGNY et al. 2011), Iquique (LAY et al. 2014) and Illapel earthquakes (RUIZ et al. 2016). Gray shaded areas stand for the identified low coupling zones (LCZs). LCZs and high coupling segments are named on the left. The apparent decrease in the average coupling North of 30°S is considered as an artifact of the Andean sliver motion (see Sect. 5.2). c Best coupling distribution obtained inverting for Andean sliver motion and coupling amount simultaneously. The rupture zones for the three major earthquakes are indicated as green ellipses. White shaded areas are zones where we lack resolution.
Comparison between the uplift rates, interseismic coupling, major bathymetric features, and peninsulas along the Andean margin (10°S–40°S). (a) Uplift rates of marine terraces reported in the literature (we present the average rate since terrace abandonment; Table S1 in the supporting information [Jara-Muñoz et al., 2015]). Each color corresponds to a marine terrace assigned to a marine isotopic stage (MIS). Gray dots are the uplift rates of the central Andean rasa estimated from a numerical model of landscape evolution [Melnick, 2016]. (b) Major bathymetric features and peninsulas and pattern of interseismic coupling of the Andean margin from GPS data inversion (this study). Gray shaded areas correspond to the areas where the spatial resolution of inversion is low due to the poor density of GPS observations (see text and supporting information for more details). The Peru-Chile trench (thick black line), the coastline (thin black line), and the convergence direction (black arrows) are indicated. We superimposed the curve obtained by shifting the trench geometry eastward by 110 km (trench-coast distance of 110 km; blue line) with the curve reflecting the 40 km isodepth of the subducting slab (red line; Slab1.0 from Hayes and Wald [2009]), a depth which corresponds approximately with the downdip end of the locked portion of the Andean seismogenic zone (±10 km) [Ruff and Tichelaar, 1996; Khazaradze and Klotz, 2003; Chlieh et al., 2011; Ruegg et al., 2009; Moreno et al., 2011; Métois et al., 2012]. The two curves are spatially similar in the erosive part of the Chile margin (north of 34°S), whereas they diverge along the shallower slab geometry in the accretionary part of the Chile margin (south of 34°S), where the downdip end of the locked zone may be shallower (Figure 4b). Red arrows indicate the low interseismic coupling associated with peninsulas and marine terraces and evidence of aseismic afterslip (after Perfettini et al. [2010] below the Pisco-Nazca Peninsula; Pritchard and Simons [2006], Victor et al. [2011], Shirzaei et al. [2012], Bejar-Pizarro et al. [2013], and Métois et al. [2013] for the Mejillones Peninsula; Métois et al. [2012, 2014] below the Tongoy Peninsula; and Métois et al. [2012] and Lin et al. [2013] for the Arauco Peninsula). FZ: Fracture zone. Horizontal blue bands are the areas where coastline is less than 110 km (light blue) or 90 km (dark blue) from the trench (see Figure 1).
Maps showing the location of the study and the events used ((a)–(c)). In red we present interplate earthquakes, while in blue, the intermediate depth, intraplate ones. We used beach balls to plot those events with known focal and circles for those without. White triangles mark the position of the Chilean Seismological Network used to locate the events; those with names represent stations used in the waveform analysis (either accelerometers or broadbands with known instrumental response). Labels over beach balls correspond to CMT codes.
Cross-section at (a) 33.5◦S and (b) 36.5◦S showing the events used in this study. In red we present interplate earthquakes, while in blue, the intermediate depth, intraplate ones.We used beach balls (vertical projection) to plot those events with knownfocal and circles for those without. In light gray is shown the background seismicity recorded from 2000 to 2006 by the Chilean Seismological Service
Schematic diagram showing the main forces that affect how slabs interact with the transition zone. The slab sinks driven by its negative thermal buoyancy (white filled arrows). Sinking is resisted by viscous drag in the mantle (black arrows) and the frictional/viscous coupling between the subducting and upper plate (pink arrows). To be able to sink, the slab must bend at the trench. This bending is resisted by slab strength (curved green arrow). The amount the slab needs to bend depends on whether the trench is able to retreat, a process driven by the downward force of the slab and resisted (double green arrow) by upper-plate strength and mantle drag (black arrows) below the upper plate. At the transition from ringwoodite to the postspinel phases of bridgmanite and magnesiowüstite (rg – bm + mw), which marks the interface between the upper and lower mantle, the slab’s further sinking is hampered by increased viscous resistance (thick black arrows) as well as the deepening of the endothermic phase transition in the cold slab, which adds positive buoyancy (open white arrow) to the slab.
By contrast, the shallowing of exothermic phase transition from olivine to wadsleyite (ol-wd) adds an additional driving force (downward open white arrow), unless it is kinetically delayed in the cold core of the slab (dashed green line), in which case it diminishes the driving force. Phase transitions in the crustal part of the slab (not shown) will additionally affect slab buoyancy. Buckling of the slab in response to the increased sinking resistance at the upper-lower mantle boundary is again resisted by slab strength.
Summary of morphologies of transition-zone slabs as imaged by tomographic studies and their Benioff stress state. Arrows on the map indicate the approximate locations of the cross sections shown around the map, with their points in downdip direction. Blue shapes are schematic representations of slab morphologies (based on the extent of fast seismic anomalies that were tomographically resolvable from the references listed). Horizontal black lines indicate the base of the transition zone (~660 km depth). For flattened slabs, the approximate length of the flat section is given in white text inside the shapes. For penetrating slabs, the approximate depth to which the slabs are continuous is given in black text next to the slabs. Circles inside the slabs indicate whether the mechanisms of earthquakes at intermediate (100–350 km) and deep (350–700 km) are predominantly downdip extensional (black) or compressional (white). Stress states are from the compilations of Isacks and Molnar (1971), Alpert et al. (2010), Bailey et al. (2012), complemented by Gorbatov et al. (1997) for Kamchatka, Stein et al. (1982) for the Antilles, McCrory et al. (2012) for Cascadia, Papazachos et al. (2000) for the Hellenic zone, and Forsyth (1975) for Scotia. The subduction zones considered are (from left to right and top to bottom): RYU—Ryukyu, IZU—Izu, HON—Honshu, KUR—Kuriles, KAM—Kamchatka, ALE—Aleutians, ALA—Alaska, CAL—Calabria, HEL—Hellenic, IND—India, MAR—Marianas, CAS—Cascadia, FAR—Farallon, SUM—Sumatra, JAV—Java, COC—Cocos, ANT—Antilles, TON—Tonga, KER—Kermadec, CHI—Chile, PER—Peru, SCO—Scotia. Numbers next to the red subduction zone codes refer to the tomographic studies used to define the slab shapes
- 2010.02.27 M 8.8 Earthquake Review
- 2024.07.19 M 7.4 Chile/Bolivia
- 2023.03.18 M 6.8 Ecuador
- 2021.11.28 M 7.5 Peru
- 2019.08.01 M 6.8 Chile
- 2019.06.14 M 6.4 Chile
- 2019.05.26 M 8.0 Peru
- 2019.05.12 M 6.1 Panama
- 2019.03.01 M 7.0 Peru
- 2019.02.22 M 7.5 Ecuador
- 2019.01.20 M 6.7 Chile
- 2018.08.21 M 7.3 Venezuela
- 2018.08.24 M 7.1 Peru
- 2018.04.02 M 6.8 Bolivia
- 2018.01.14 M 7.1 Peru
- 2018.01.15 M 7.1 Peru Update #1
- 2017.06.30 M 6.0 Ecuador
- 2017.04.24 M 6.9 Chile
- 2017.04.23 M 5.9 Chile
- 2016.12.25 M 7.6 Chile
- 2016.11.24 M 7.0 El Salvador
- 2016.11.04 M 6.4 Maule, Chile
- 2016.04.16 M 7.8 Ecuador
- 2016.04.16 M 7.8 Ecuador Update #1
- 2015.11.29 M 5.9 Argentina
- 2015.11.11 M 6.9 Chile
- 2015.11.24 M 7.6 Peru
- 2015.11.26 M 7.6 Peru Update
- 2015.09.16 M 8.3 Chile
- 2014.04.01 M 8.2 Chile
- 2010.02.27 M 8.8 Chile
- 1960.05.22 M 9.5 Chile
Chile | South America
General Overview
Earthquake Reports
Social Media
#EarthquakeReport for M7.3 #Sismo #Terremoto #Earthquake en #Chile #Bolivia
intermediate depth
normal (extensional) mechanism
"slab" event within subducted Nazca plate
chance for liquefactionlearn more about regional tectonics: https://t.co/3KwkIWY9ZJhttps://t.co/qH9UgAXMCs pic.twitter.com/Jo6suUFcHv
— Jason "Jay" R. Patton (@patton_cascadia) July 19, 2024
#EarthquakeReport for M7.3 #Sismo #Terremoto #Earthquake en #Chile #Bolivia
this shows the @USGS_Quakes estimate of fatalities & damage
hopefully not too many fatalities!learn more about regional tectonics: https://t.co/3KwkIWY9ZJhttps://t.co/qH9UgAXMCs pic.twitter.com/XgyxISJ6dI
— Jason "Jay" R. Patton (@patton_cascadia) July 19, 2024
#EarthquakeReport for M7.4 #Sismo #Terremoto #Earthquake en #Chile y #Bolivia
intermediate depth
normal (extensional) mechanism
within subducted Nazca plate (slab event)report: https://t.co/yPFOhR9n8b pic.twitter.com/RdypNTPGHV
— Jason "Jay" R. Patton (@patton_cascadia) July 19, 2024
Subject: Information Statement Tsunami Info Stmt: M7.4 Northern Chile 1851PDT Jul 18: Tsunami NOT expected; CA,OR,WA,BC,and AK
— NWS Tsunami Alerts (@NWS_NTWC) July 19, 2024
M 7.3 – 41 km SE of San Pedro de Atacama, Chile (126 km deep)https://t.co/Vdl0Fn1bwP pic.twitter.com/11ziNtZzup
— Wendy Bohon, PhD 🌏 (@DrWendyRocks) July 19, 2024
A M7.3 earthquake occurred in northern Chile. This seismogram shows the earthquake waves recorded by a seismic station in Santiago.
See how the ground moved using Station Monitor: https://t.co/Tir0KZELXN pic.twitter.com/AjgNAAOBnT
— EarthScope Consortium (@EarthScope_sci) July 19, 2024
7.3 quake in Chile was well-recorded by my Raspberry Shake. Thankfully the area seems to be somewhat sparsely populated. https://t.co/kmiwfEgPCq pic.twitter.com/4Rfa2LzZca
— Ryan Hollister (@phaneritic) July 19, 2024
Mw=7.3, CHILE-ARGENTINA BORDER REGION (Depth: 154 km), 2024/07/19 01:50:47 UTC – Full details here: https://t.co/PbDBRxEe4N pic.twitter.com/R1cDM74Xv8
— Earthquakes (@geoscope_ipgp) July 19, 2024
Six hours ago, intermediate-depth Mw7.4 #earthquake below Atacama, Northern Chile, near border with Argentina and Bolivia, felt as far as Brazil.https://t.co/SS9B9nuhB8https://t.co/jA2QEgo7Vh pic.twitter.com/790HrIi1tZ
— José R. Ribeiro (@JoseRodRibeiro) July 19, 2024
#Today 7.4 Mw below Andean Antofagasta Region (Northern #CHILE 🇨🇱), ocurred in Nazca Slab where the intermediate historical seismicity is historically no greater than 7.0 Mw.
FIgs from (Leon-Rios et al. 2024) : https://t.co/19risNw6Zj pic.twitter.com/58U7xhJI3w
— Abel Seism🌏Sánchez (@EQuake_Analysis) July 19, 2024
Scenario (**NOT REAL DATA**) of deformations for the July 19, M 7.1, #Chile #earthquake (very deep: ~120 Km) Predicted signal not very reliable and at the edge of InSAR sensitivity. Let's wait and see what #Sentinel1 will do. https://t.co/KECfS6NoRy
with @antandre71 pic.twitter.com/Af5XDoj04O
— Simone Atzori (@SimoneAtzori73) July 19, 2024
2024-07-19 major M7.4 #Chile #earthquake recorded in #Scotland & #Stornoway + historical seismicity & cross section.
Clear and defined arrivals on all stations and channels.
Dist.: 10681.7km
Travel Time: 13m 19.1s
Depth: 117.4km#Python @raspishake @matplotlib #CitizenScience pic.twitter.com/E2NUbPd08b— Giuseppe Petricca (@gmrpetricca) July 19, 2024
Watch the seismic waves from the M7.4 earthquake in Chile sweep across North America. Sound on 🔊 pic.twitter.com/zIbWYz632O
— Wendy Bohon, PhD 🌏 (@DrWendyRocks) July 19, 2024
A M7.4 earthquake struck below the Chile-Argentina-Bolivia border last night, causing widespread shaking, but no reports of damage. The earthquake occurred within the sinking slab of the underlying subduction zone – a highly seismic area.
Read more on our blog; link in my bio. pic.twitter.com/lCqpvEc3V9
— Dr. Judith Hubbard (@JudithGeology) July 19, 2024
A magnitude 7.4 earthquake recently occurred in northern Chile. At a depth near 120 km, this earthquake occurred within the subducting Nazca Plate as it dives beneath the South American Plate. This is a region of high seismicity, and earthquakes increase in depth from W to E. pic.twitter.com/VvYGU3dQwM
— EarthScope Consortium (@EarthScope_sci) July 19, 2024
CCTV footage in Tocopilla, Chile, captured the moment a strong earthquake struck off the country’s north coast.
The US Geological Survey said the quake had a magnitude of 7.4, with an epicentre around 27.9 miles (45km) south of San Pedro de Atacama.https://t.co/OVNPCuTpft pic.twitter.com/AwUVcyvQhB
— Sky News (@SkyNews) July 19, 2024
- Frisch, W., Meschede, M., Blakey, R., 2011. Plate Tectonics, Springer-Verlag, London, 213 pp.
- Hayes, G., 2018, Slab2 – A Comprehensive Subduction Zone Geometry Model: U.S. Geological Survey data release, https://doi.org/10.5066/F7PV6JNV.
- Holt, W. E., C. Kreemer, A. J. Haines, L. Estey, C. Meertens, G. Blewitt, and D. Lavallee (2005), Project helps constrain continental dynamics and seismic hazards, Eos Trans. AGU, 86(41), 383–387, , https://doi.org/10.1029/2005EO410002. /li>
- Jessee, M.A.N., Hamburger, M. W., Allstadt, K., Wald, D. J., Robeson, S. M., Tanyas, H., et al. (2018). A global empirical model for near-real-time assessment of seismically induced landslides. Journal of Geophysical Research: Earth Surface, 123, 1835–1859. https://doi.org/10.1029/2017JF004494
- Kreemer, C., J. Haines, W. Holt, G. Blewitt, and D. Lavallee (2000), On the determination of a global strain rate model, Geophys. J. Int., 52(10), 765–770.
- Kreemer, C., W. E. Holt, and A. J. Haines (2003), An integrated global model of present-day plate motions and plate boundary deformation, Geophys. J. Int., 154(1), 8–34, , https://doi.org/10.1046/j.1365-246X.2003.01917.x.
- Kreemer, C., G. Blewitt, E.C. Klein, 2014. A geodetic plate motion and Global Strain Rate Model in Geochemistry, Geophysics, Geosystems, v. 15, p. 3849-3889, https://doi.org/10.1002/2014GC005407.
- Meyer, B., Saltus, R., Chulliat, a., 2017. EMAG2: Earth Magnetic Anomaly Grid (2-arc-minute resolution) Version 3. National Centers for Environmental Information, NOAA. Model. https://doi.org/10.7289/V5H70CVX
- Müller, R.D., Sdrolias, M., Gaina, C. and Roest, W.R., 2008, Age spreading rates and spreading asymmetry of the world’s ocean crust in Geochemistry, Geophysics, Geosystems, 9, Q04006, https://doi.org/10.1029/2007GC001743
- Pagani,M. , J. Garcia-Pelaez, R. Gee, K. Johnson, V. Poggi, R. Styron, G. Weatherill, M. Simionato, D. Viganò, L. Danciu, D. Monelli (2018). Global Earthquake Model (GEM) Seismic Hazard Map (version 2018.1 – December 2018), DOI: 10.13117/GEM-GLOBAL-SEISMIC-HAZARD-MAP-2018.1
- Silva, V ., D Amo-Oduro, A Calderon, J Dabbeek, V Despotaki, L Martins, A Rao, M Simionato, D Viganò, C Yepes, A Acevedo, N Horspool, H Crowley, K Jaiswal, M Journeay, M Pittore, 2018. Global Earthquake Model (GEM) Seismic Risk Map (version 2018.1). https://doi.org/10.13117/GEM-GLOBAL-SEISMIC-RISK-MAP-2018.1
- Storchak, D. A., D. Di Giacomo, I. Bondár, E. R. Engdahl, J. Harris, W. H. K. Lee, A. Villaseñor, and P. Bormann (2013), Public release of the ISC-GEM global instrumental earthquake catalogue (1900–2009), Seismol. Res. Lett., 84(5), 810–815, doi:10.1785/0220130034.
- Zhu, J., Baise, L. G., Thompson, E. M., 2017, An Updated Geospatial Liquefaction Model for Global Application, Bulletin of the Seismological Society of America, 107, p 1365-1385, https://doi.org/0.1785/0120160198
- Antonijevic, S.K., et a;l., 2015. The role of ridges in the formation and longevity of flat slabs in Nature, v. 524, p. 212-215, doi:10.1038/nature14648
- Bishop, B.T., Beck, S.L., Zandt, G., Wagner, L., Long, M., Knezevic Antonijevic, S., Kumar, A., and Tavera, H., 2017, Causes and consequences of flat-slab subduction in southern Peru: Geosphere, v. 13, no. 5, p. 1392–1407, doi:10.1130/GES01440.1.
- Chlieh, M. Mothes, P.A>, Nocquet, J-M., Jarrin, P., Charvis, P., Cisneros, D., Font, Y., Color, J-Y., Villegas-Lanza, J-C., Rolandone, F., Vallée, M., Regnier, M., Sogovia, M., Martin, X., and Yepes, H., 2014. Distribution of discrete seismic asperities and aseismic slip along the Ecuadorian megathrust in Earth and Planetary Science Letters, v. 400, p. 292–301
- Kumar, A., et al., 2016. Seismicity and state of stress in the central and southern Peruvian flat slab in EPSL, v. 441, p. 71-80. http://dx.doi.org/10.1016/j.epsl.2016.02.023
- Villegas-Lanza, J. C., M. Chlieh, O. Cavalié, H. Tavera, P. Baby, J. Chire-Chira, and J.-M. Nocquet (2016), Active tectonics of Peru: Heterogeneous interseismic coupling along the Nazca megathrust, rigid motion of the Peruvian Sliver, and Subandean shortening accommodation, J. Geophys. Res. Solid Earth, 121, 7371–7394, https://doi.org/10.1002/2016JB013080.
- Wagner, L.S., and Okal, E.A., 2019. The Pucallpa Nest and its constraints on the geometry of the Peruvian Flat Slab in Tectonophysics, v. 762, p. 97-108, https://doi.org/10.1016/j.tecto.2019.04.021
- Yepes,H., L. Audin, A. Alvarado, C. Beauval, J. Aguilar, Y. Font, and F. Cotton (2016), A new view for the geodynamics of Ecuador: Implication in seismogenic source definition and seismic hazard assessment, Tectonics, 35, 1249–1279, https://doi.org/10.1002/2015TC003941.
- Beck, S., Barrientos, S., Kausel, E., and Reyes, M., 1998. Source Characteristics of Historic Earthquakes along the Central Chile Subduction Zone in Journal of South American Earth Sciences, v. 11, no. 2, p. 115-129, https://doi.org/10.1016/S0895-9811(98)00005-4
- Gardi, A., A. Lemoine, R. Madariaga, and J. Campos (2006), Modeling of stress transfer in the Coquimbo region of central Chile, J. Geophys. Res., 111, B04307, https://doi.org/10.1029/2004JB003440
- Horton, B.K., 2018. Sedimentary record of Andean mountain building< in Earth-Science Reviews, v. 178, p. 279-309, https://doi.org/10.1016/j.earscirev.2017.11.025
- Leyton, F., Ruiz, J., Campos, J., and Kausel, E., 2009. Intraplate and interplate earthquakes in Chilean subduction zone:
A theoretical and observational comparison in Physics of the Earth and Planetary Interiors, v. 175, p. 37-46, https://doi.org/10.1016/j.pepi.2008.03.017 - Marot, M., Monfret, T., Gerbault, M.,. Nolet, G., Ranalli, G., and Pardo, M., 2014. Flat versus normal subduction zones: a comparison based on 3-D regional traveltime tomography and petrological modelling of central Chile and western Argentina (29◦–35◦S) in GJI, v. 199, p. 1633-164, https://doi.org/10.1093/gji/ggu355
- Métois, M., Vigny, C., and Socquet, A., 2016. Interseismic Coupling, Megathrust Earthquakes and Seismic Swarms Along the Chilean Subduction Zone (38°–18°S) in Pure Applied Geophysics, https://doi.org/10.1007/s00024-016-1280-5
- Rhea, S., Hayes, G., Villaseñor, A., Furlong, K.P., Tarr, A.C., and Benz, H.M., 2010. Seismicity of the earth 1900–2007, Nazca Plate and South America: U.S. Geological Survey Open-File Report 2010–1083-E, 1 sheet, scale 1:12,000,000.
- Ruiz, S. and Madariaga, R., 2018. Historical and recent large megathrust earthquakes in Chile in Tectonophysics, v. 733, p. 37-56, https://doi.org/10.1016/j.tecto.2018.01.015
- Saillard, M., L. Audin, B. Rousset, J.-P. Avouac, M. Chlieh, S. R. Hall, L. Husson, and D. L. Farber, 2017. From the seismic cycle to long-term deformation: linking seismic coupling and Quaternary coastal geomorphology along the Andean megathrust in Tectonics, 36, https://doi:10.1002/2016TC004156.
References:
Basic & General References
Specific References
Return to the Earthquake Reports page.
- Sorted by Magnitude
- Sorted by Year
- Sorted by Day of the Year
- Sorted By Region