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Mesh of Cascadia interface Present-day vertical land motion rates (mm/yr) the Gaussian and Gamma locking models in Schmalzle et al.

~ AN ° [2014] Figure 6. The small circles are the observed VLM rates:
. - A the large circles are the model predictions.
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Shaded Relief Ma of ShlVEl Terraces: Lower terraces

tasgs VNS 1o T-2, T-3, and T-4 on the left and the upper terrace T-7 on the right. View in
g Photo A (see below) was acquired in the view directed shown by the yellow
arrows. The building in the photo is labeled on the map. Note the anthropo-
genic modification of the scarp on the left (walls built into the scarp, see
photo below). The ends of the scarp in this map are shown as red arrows.
Based on the Stallman and Kelsey [2006] incision rate, T-2 is about 18 ky old,
T-3 is ~25 ky old, T-4 is ~34 ky old, and T-7 is ~104 ky old.
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Active Faulting Associated with the Southern

Cascadia Subduction Zone
Kelsey et al. (2001)
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Plate configuration for the Cascadia subduction zone (CSZ). Juan
de Fuca and Gorda plates are subducting northeastwardly
oblique beneath the North America plate at ~36 mm/yr in the
Humboldt Bay region. Paleoseismic core sites (marine and ter-
restrial) are plotted as circles.
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Postseismic Deformation: the top two figures show the cumulative coseismic + postseismic
displacements after complete postseismic relaxation in the downgoing Juan de Fuca mantle and overriding
‘ \ North American mantle wedge (geometries in section 5). These models predict multiple meters of addi-
o P @ [ 40° . . I : ” * ’ . . —H tional postseismic subsidence along some areas of the coast. The lower left figure shows the total coseis-
- " R e o - e — O - - —— mic + postseismic deformation if one only includes viscoelastic relaxation in the downgoing plate and ne-

’ ' = : glects the overriding mantle wedge. This shows that the downgoing plate actually dominates the simulated
Model Input: 2-b view of fault elements used in this modeling. GPS, tide gage, and benchmark - S C— | B __— '. postseismic deformation field (as the upper left and lower left figures are nearly identical), with the over-
leveling based vertical land motion rate in mm/yr is symbolized as colored dots. Ny T * riding mantle wedge contributing very little. This is contrary to observations of postseismic deformation in

| = : ,ﬁ . -. E other subduction environments (e.g. Suito and Freymueller, 2009) but perhaps possible as the very young

GIA Rates: “Late Present-day VLM rates without GIA correction a " — : . = ,f : Juan de Fuca plate could have a limited elastic thickness. Not included in the top two models is viscoelastic
Holocene relative sea- = T il B[+ - = = . = = ‘ relaxation in the lower crust of the overriding North American plate (above the mantle wedge). The
level rise field generated ] e - i A = “ =4 | B | < ' ’ = 5' e bottom right figure shows that if this mechanism were present, it could counteract some of the postseismic
by the empirical- | GCescentCty 1 = L * —— : N o | ———N - ] subsidence that would be predicted by downgoing-plate viscoelastic relaxation.
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Based on earthquake fault slip-rates and marine terrace uplift-rates, active faults in the area are possibly due to

crustal faults in the North America plate may account for between 20% strain accumulation across these faults
and 30% of the plate convergence in the Humboldt Bay region. :
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Schematic diagrams showing the pattern of (A) inter-seismic and (B) co-seismic defor-
mation associated with a subduction zone earthquake during an earthquake defor-
mation cycle. Adapted from Plafker (1972) to reflect the spatial pattern of tectonic
deformation during the earthquake cycle in Cascadia.
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We calculate vertical separation rates across these
B8 T e s faults in 2 ways: (1) we calculate a rate by differencing

the two closest geodetic sites (single offset rate), (2)
= we calculate the mean block rate on either side of
N raraman these faults and difference those rates (block rate).
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above) without GIA cor- - Coseismic models: in each model, we take the maximum of the VLM-inferred interseismic strain accumulation model and the Schmalzle et al. [2014] model in- * stratigraphic descriptions UCERFS Fault Geometry: Future analyses will incorporate North America crustal faults. We

. ‘ - - . ‘ o . . . . e establish chronostratigraphy will evaluate the relative contribution of these crustal faults to the regional strain (e.g.
rection. 20 m - A s dicated. In both cases this adds the additional locked patch under Eureka to the overall Cascadia locking model. We then multiply by -1 (for forward slip) and 300 years B Rollins et al., 2018). We hope to determine the spatial extent of different tectonic forcing

of F———— L O
- [0 W Depth to slab (KTEL e ERG it rates (mm/y) L i (an approximate interseismic interval) to get coseismic slip. o fault trenching factors (e.g. where/how do Cascadia, San Andreas, and the Mendocino fault overlap;
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Map and cross-section showing southwest vergent active faults [Dietrich, 2014] and combined with relative 2 ‘

in the Mad River fault zone including the Fickle Hill, Mad River, ages to calculate slip rates. A CDE
Mckinleyville, Blue Lake, and Trinidad faults. | AT e T g
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Maps of (A) Gaussian and (B) Gamma decade-scale model locking fraction
with pink dotted line that marks the downdip 20% locked contour. Solid
white lines mark the 10 mgal gravity anomaly contour of Blakely et al.
[2005]. Dashed white line (B) indicates where 96% of tremors are located
from the PNSN catalog between 2009 to 2012. Thin gray lines are 10 km
depth contours from McCrory et al. [2004] Schmalzle et al., 2014




