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Interseismic vertical deformation in northern California is collocated with paleoseismic evidence of coseismic vertical de-
formation, but they are not opposite in sense of motion as expected with the classic subduction zone model as evidenced

from Plafker’s work on the 1960 Chile and 1964 Alaska subduction zone earthguakes.

GPS and tide-gage data are compared with paleoseismic data in the form of sediment cores in the region of Humboldt Bay and Crescent City, northern California. In Humboldt Bay, North Spit (NOAA) and Mad River slough (campaign) tide gage data show rates of subsidence of
~3 and ~2 mm/yr respectively, while the Crescent City tide gage (NOAA) shows ~3mm/yr of emergence. GPS vertical motion rates show a similar gradient of subsidence and uplift in this region, consistent with the tide gage data. Paleoecologic estimates of the magnitude of co-

seismic subsidence in Mad River slough are ~0.5 m.

Tectonic deformation at the Cascadia subduction zone:

Humboldt Bay: Geodesy:

Wang et al., 2003
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Mechanisms likely responsible for this mismatch include (1) upper plate fault rupture (e.g. Patton Bay fault in 1964 Alaska)(2) varying land-level / sea-level relations during coseismic periods, (3)spatial variation in slip patches along the megathrust for different earthquakes, (4) and deep locking and deep slip on the megathrust (similar to 2011 Tohoku-OKki). Tide gage deployments in the next year and updates

to level surveys around Humboldt Bay will help reveal more details about the spatial variation in fault coupling. Resampling buried

soils for new AMS radiocarbon ages will also provide more details that might further reveal age discordance in regions affected by different upper plate faults of the accretionary prism in northern California.

Possible Causes for mismatch:
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