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Crescent City marsh (Carver and others, 1998)
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First Slough cores (Valentine, 1992)
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South Bay East cores (Valentine, 1992)
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South Bay West cores (Carver and others, 1998)
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14C Limitations1 Descriptive
Limitations2

Scientific
Value of 
the Site3

Prioritization for 
Conducting

Additional Studies

Crescent City marsh no diatoms no N,L A 1 5

Lagoon Creek no diatoms yes I A 3 12

Mad River Slough no radiolarians yes B,L,I S 1 1

Arcata Marsh yes diatoms yes A,L A 1 2

Jacoby Creek yes no yes A,L A 1 3

Eureka Slough no no yes B,L S 2 6

First Slough no no yes B,L S 2 7

Fay Slough no no no B,L S 2 8

South Bay (west) no diatoms yes A A 3 10 The data here is mostly sufficient, occupying a new site would be more prudent.
South Bay (east) occupies an area subject to repeated Late Holocene coseismic 

Table 1. Data limitations and priorities for conducting additional paleoseismic and paleotsunami studies at site specific locations in Northern California.

Notes

The event horizons at the Crescent City marsh are poorly constrained.  There is a high 
likelihood that the marsh archives teletsunami evidence.
The data there is mostly sufficient and the lagoon was found to contain dangerous levels of 
dioxin.

Eureka Slough, First Slough and Fay slough occupy an area subject to repeated Late 
Holocene coseismic subsidence, the timing and magnitude of the associated land level 
changes is poorly understood.  This area is also occupied by critical transportation 
infrastructure and an airport protected by tidal levees.

Mad River Slough, Arcata Marsh and Jacoby Creek occupy an area subject to repeated Late 
Holocene coseismic subsidence, the timing and magnitude of the associated land level changes is 
poorly understood.  This location is also occupied by critical transportation infrastructure and a public 
water treatment facility vulnerable to relative sea-level changes.

South Bay (east) no no no B,L,N,D S 2 9
Swiss Hall yes no yes A A 3 11
Hookton Slough yes diatoms yes A A 3 13

Eel River no forminifera yes B,L,N S 1 4

The Eel river valley lies just north of the triple junction and has the potential to record paleosiesmic and 
paleotsunami evidence at the southern most Csz.  This data would be valuable in understanding how 
the southern Csz transitions to the San Andreas fault zone.

South Bay (east) occupies an area subject to repeated Late Holocene coseismic 
subsidence, the timing and magnitude of the associated land level changes is poorly 
understood.  This location is also occupied by critical transportation infrastructure and a 
community college.
The data here is mostly sufficient, occupying a new site would be more prudent.
The data here is mostly sufficient, occupying a new site would be more prudent.

1  14C limitations include: B-bulk samples of organic material were submitted for analysis; I- Inverse dates were encountered after analysis of the data; N- Not all of the disturbance events had 14C determinations; L- several or all 
event horizons have a limited number of samples to statistically verify age determinations; D-Anomalous age determination within data set; A-14C sample collection techniques and analysis meet current scientific standards.
2 Descriptive limitations include: A- Lithologic descriptions of core logs meet current scientific standards; S- Lithologic descriptions of core logs are simplified compared to modern scientific standards.
3 Scientific value of site is a subjective determination based on the specific attributes of the site including: ability to archive disturbance events, the value of the existing data, proximity to large human populations or valuable 
infrastructure,  if it spatially or temporally occupies a known or important data gap, or if the data collected at the site meets current scientific standards and does not currently need further analysis.  The sites are evaluated on 
a scale from 1-3 with 1 assigned to locations that are a top priority for further investigation and 3 being locations that do not merit further investigation at this time.
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Gorda - Block comprising the subducting Gorda Plate at southern end of the Cascadia subduction zone. This block is internally deforming 
in response to 1) subduction 2) northward impingement of the Pacific plate.

South Cascadia - Defines northern end of study area.  Block characterized by the accretionary prism with deformation consistent with 
subduction and not directly influenced by migration of the Pacific - North America boundary.

Pacific- Block comprising the Pacific Plate bound on the north by the Mendocino transform and on the east by the San Andreas fault 
transform margin.

Vizcaino – Microplate of the northeastern Pacific Plate attached ~11 my (Godfrey, 1998). Its boundaries may influence the location of the 
northern San Andreas transform margin and the northeast-vergent uplift related to formation of the King Range topographic high.

Klamath - Defined by the post-Cretaceous terranes of the Klamath Mountains Province.  Considered a semi-rigid block and moving 
northwest towards the accretionary margin of southern Cascadia and rotating clockwise. Buttresses subduction zone accretionary 
structures on the west, and buttresses Eastern block in the south.

Sierra Nevada-Great Valley – Inland eastern edge of study area defined by rigid northwest motion that converges with Eastern 
and Klamath blocks.

Coastal – Fault bounded block between the San Andreas and Maacama fault zones that defines the western extent of the transform 
margin between Pacific and North American Plates.  Moves north at about 3.5 cm/yr.

Central - Fault bounded block between the Maacama and Bartlett Springs-Lake Mtn fault zones within the central portion of the 
transform margin between Pacific and North American Plates.  Moves north at about 2.5 cm/yr.

Eastern - Block east of the Bartlett Springs-Lake Mtn fault zone and defined on the east by the contact of Franciscan ultramafics and the 
Great Valley sequence.  Northern area is characterized by regional uplift as a result of impingement with Klamath Block to north.  Moves 
north-northwest at about 1.5 cm/yr.

Mendocino – Region above the slab window that transitions from predominately strike-slip to predominately compressional 
deformation. Defined on the north by upper plate reverse faults (Russ fault), on the south by the isostatic gravity anomaly low, and in the 
east by the Bartlett Springs-Lake Mtn fault zone.  Through going dextral slip faults begin to right-step and strike more northerly across this 
block.

Eel Delta – Block contains the Eel River basin and is bound on the south by the Russ fault, and on the north by the Little Salmon fault 
zone.  North-South contraction is accomodated across the Eel River syncline and is being impinged upon from the south.  Block moves ~2 
cm/yr northward as transition to subduction zone begins.

Freshwater – Block contains the upper plate thrust faults and folds within the southern Cascadia subduction zone. Bound on the south 
by the Little Salmon fault zone, on the northeast by the Big Lagoon-Bald Mtn fault zone, and on the east by the Eaton-Roughs-Lake Mtn 
fault zone.  Eastern boundary accommodates inland strike-slip deformation east of the accretionary prism and north of Cape Mendocino.

South Fork – Block west of the Klamath Block and immediately east of the upper plate thrusts faults coupled with the subducting plate.  
The southern boundary is near the southern extent of the (E-W) subducted slab. Eastern extent of dextral deformation; does not propagate 
east of the Klamath block.
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Recurrence Intervals
oldest
age ^ oldest age ^ events events RI R. I. RI EQ RI

reference region min max included * total ++
mean +/- rounded # reported $ missing %

new
Goldfing 03500350350359191ZSCa8002 ,.la .te ,re
Goldfing 0084084084ZSCb8002 ,.la .te ,re
Goldfing 0023023023ZSCc8002 ,.la .te ,re
Goldfinger, et. al., 2008 dCSZ 10010 9650 38 38 259 5 260 220 0 260
Nelson, et. al., 2006 Bradley Lake 4700 4700 12 12 405 0 400 440 9 229
Kelsey, et. al., 2005 Bradley Lake 4630 4460 12 12 390 8 390 390 9 223
Witter, et. al., 2003 Coquille 6720 6500 12 12 578 10 580 580 19 225
Kelsey, et. al., 2002 Sixes 5600 5050 11 11 508 28 510 510 14 224
Carver, et. al. 1998 Crescent City 3060 2760 1, 2, 4, 5, 6 6 483 53 480 7 222
Abramson, et. al., 2007 Lagoon Creek 3440 3164 2, 4, 5, 6, 7, 8 8 271 63 270 1 240
Vick, et. al., 1988 North Bay 1568 1390 4, 5 5 308 37 310 2 221
Pritchard, et. al., 2004 North Bay 1684 1410 2, 3, 4 4 448 45 450 4 225
Valentine, 1992 North Bay 4290 4087 1, 2, 4, 6, 7, 8, 9, 10 10 379 30 380 320 7 224
Carver, et. al. 1998 South Bay 1695 1542 2 2 1369 89 1370 10 228
Valentine, 1992 South Bay 3366 2946 1, 2, 4, 5, 6, 7, 8 8 391 37 400 320 6 229
Witter, et. al., 2002 South Bay 2289 1954 2, 3, 4 4 691 89 690 8 230
Patton, et. al., 2006 South Bay 3631 3474 3, 4, 5 5 688 38 900 900 15 225
Li, 1992 Eel River 1990 1739 2, 3, 4, 5 5 362 52 360 3 225

without SW 
bay mean 513 30 513 421

all events mean 519 41 540 494
^  cal yrs BP, years before 1950.
* events included in RI estimate.
++  total events at site.
#  Recurrence Interval (RI) based on events with radiocarbon based age control.
%  number of earthquakes required to shorten RI to match marine RI (result in the next column over).
%  number of earthquakes required to shorten RI to match marine RI (result in the next column over).

Earthquake and tsunami hazard for northwestern California and southern Oregon is predominately based on estimates of recurrence for earthquakes 
on the Cascadia subduction zone and upper plate thrust faults, each with unique deformation and recurrence histories. Coastal northern California is 
uniquely located to enable us to distinguish these different sources of seismic hazard as the accretionary prism extends on land in this region. This region 
experiences ground deformation from rupture of upper plate thrust faults like the Little Salmon fault. Most of this region is thought to be above the 
locked zone of the megathrust, so is subject to vertical deformation during the earthquake cycle. Secondary evidence of earthquake history is found 
here in the form of marsh soils that coseismically subside and commonly are overlain by estuarine mud and rarely tsunami sand. It is not currently known 
what the source of the subsidence is for this region; it may be due to upper plate rupture, megathrust rupture, or a combination of the two. Given that 
many earlier investigations utilized bulk peat for 14C  age determinations and that these early studies were largely reconnaissance work, these studies 
need to be reevaluated.

Recurrence Interval estimates are inconsistent when comparing terrestrial (~500 years) and marine (~220 years) data sets. This inconsistency may be due 
to 1) different sources of archival bias in marine and terrestrial data sets and/or 2) different sources of deformation. Factors controlling successful ar-
chiving of paleoseismic data are considered as this relates to geologic setting and how that might change through time. We compile, evaluate, and 
rank existing paleoseismic data in order to prioritize future paleoseismic investigations. 14C ages are recalibrated and quality assessments are made for 
each age determination. We then evaluate geologic setting and prioritize important research locations and goals based on these existing data.

Terrestrial core transects are located in each of eight archival domains in order to evaluate archival bias and potential deformation sources for the 
southern Cascadia subduction zone. These domains are located in the Eel River, Humboldt Bay, Humboldt Lagoons, and Crescent City regions. In any 
given domain, evidence of earthquakes can be regional, local, or both. Core transects are designed to capture archival bias due to 1) interseismic de-
formation in the upper plate or the megathrust, 2) rupture on upper plate thrust faults, 3) rupture on the megathrust, or 4) rupture on both. Modern bio-
geochemical transects are used to calibrate paleontologic estimates. 

Based on our assessment, we determine which sites need better age control, which sites need supplemental coring, and key new research areas that 
need to be investigated.


