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Recurrence of southern Cascadia subduction earthquakes is constrained by strati-
graphic evidence onshore and offshore. The seismoturbidite record offshore has a
higher frequency that the tsunami record in several locales. Bradley Lake contains
the temporally longest and highest-frequency record of paleotsunamis along the

Cascadia margin. Probably because tsunamis have a higher recording threshold in

onshore lakes, the paleoseismologic record onshore most likely includes only a

subset of the offshore paleoseismic record. Using additional geophysical methods,

we are re-evaluating the stratigraphic record from Bradley

cores archived at the Oregon State University Core Facility.
whether additional analysis of these cores will yield a paleoseismic record equiva-

lent to the offshore record at the same latitude.

Lake using sediment
We are interested in

Using new CT data, we use the published sedimentary facies to characterize and

interpret the stratigraphic record from the lake. Using these facies interpretations

and CT density-based well log correlation techniques, we correlate strata be-

tween each core and compare our results with those from the original 2005 pub-

lished results and offshore cores.

In addition to published facies associations, we interpret an upward fining facies,

commonly directly below the tsunami sand sheets, but also found between the
tsunami deposits. Many of these units appear to be paired with an organic rich
facies as are the tsunami deposits. This facies may result from hyperpycnal flow,

storm flow, sublacustrine seismo-turbidites, or inundation from tsunamis of mag-

nitude smaller than that required to transport sediment from the dunes to the
west. The return period of the additional lake turbidites and sand sheets is com-

bined is ~ 280 years, consistent with the offshore turbidite record and with tsuna-

mi models published in 2014 showing that some of the southern-most Cascadia
earthquakes are unlikely to produce tsunami deposits in the lake.

Cascadia subduction zone (CSZ)

\\Queen Charlotte
\fault_—,

—— s

BRITISH
COLUMBIA

“SVancouver ~ CANADA

¥ Portiand
Netarts Bay
Salmon River estuary

P Yaquina Bay & North
America
plate
Triangle Lake
Pacific
plate Coquille River

A
—A__ Thrust fault at Bra_dley Lake
plate boundary Sixes River
—— Other faults
Spreading ridge

——- 200-m isobath
——— Deep-sea channel

A Volcano

o Earthquake evidence

e Tsunami deposit ! Eel River
Cape Mendocino

OREGON

Andreas
fault

1250

300 o \\ CALIFORNIA

120°

Nelson et al. (2004)
Chaytor et al. (2004)
The Explorer, Juan de Fuca, and Gorda plates are subducting be-

neath the North America plate. Paleoseismic core sites are plot-
ted as circles. Rogue Apron, Triangle Lake, Hydrate Ridge, and
Bradley Lake sites are designated.
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OVERALL, a tectonic plate descends, or BETWEEN EARTHQUAKES the plates DURING AN EARTHQUAKE the leading
“subducts,” beneath an adjoining plate. slide freely at great depth, where hot and edge of the overriding plate breaks free,
But it does so in a stick-slip fashion. ductile. But at shallow depth, where cool springing seaward and upward. Behind,
and brittle, they stick together. Slowly the plate stretches; its surface falls. The
squeezed, the overriding plate thickens. vertical displacements set off a tsunami.

A. Lacustrine

liguefaction
and transport
downslope

Morey et al., (2012)

Two possible scenarios for mechanisms to ex-

underwater plain seismogenic terrigenous layers in lake sedi-

failures

ments.

(A) Shaking from a subduction zone earthquake
will either dislodge material internal to the lake
(above) or external to the lake (below). This cre-
ates a mixture denser than the surrounding
water, which is then transported as a gravity flow
producing a turbidite deposit with fining upward
structure. Sediment transported into the lake
from the drainage is unlikely to produce a gravity
flow deposit and would have inverse then
normal grading and thin from the source.

(B) An interpretation of the mechanism creating
seismogenic turbidite deposits in marine sedi-
ments. Shaking dislodges and entrains sediment
from shallower water creating density flows
which are then transported to the abyssal plain

via submarine channels and as sheet flows
where sediments are deposited as fining upward
seguences.

Earthquake Recurrence

Segmented rupture model, revised from Goldfinger et
al. (2012). This model reflects revision of the northern
boundaries of Segments B, C, and D, with subdivision
to include C’ and addition of segments E and F based
on new core data (this study) and tsunami modeling at
Bradley Lake (Priest et al. 2014). Marine core sites con-
trolling rupture-length estimates are shown as yellow
dots. Addition of several small ruptures in northern
California are shown in Segment E, and a single north-
ern rupture is identified off Washington in Segment F,
both from Goldfinger et al., (2013). Preferred latitudi-
nal limits shown with red shading. Estimated minimum
and maximum limits shown with dashed lines. Widths
and up and downdip limits approximate. Widths and
up and downdip limits approximate. Paleoseismic seg-
mentation shown also is compatible with latitudinal
boundaries of episodic tremor and slip (ETS) events
proposed for the downdip subduction interface
(Brudzinski and Allen, 2007) and shown by white
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“(A) Holocene sand dunes ornament broad Pleisto-
cene marine terraces along the coast near Bradley
Lake in southern Oregon. Blue lines show landward
limit of simulated tsunami inundation using a
model grid with historical topography. The lines
depict inundation using earthquake scenarios with
11 and 16 m of fault slip, equivalent to 350 years
(dark blue) and 500 years (light blue) of plate con-
vergence, respectively.

(B) Evidence for recent seaward shift in shoreline
position includes a wave eroded sea cliff mantled
by dune sand and the shoreline in 1925 mapped by
early coastal surveyors compared to the wet/dry
sand line in the 2005 orthophoto.

(C) The shoreline probably reached its most land-
ward position in 1939 when winter storms lowered
the beach and shifted the shoreline landward of its
position in 1925”

Upward Fining Facies: Bradley Lake

Examples of upward fining facies in Bradley
Lake cores E & F. For each core, plotted left
to right: Disturbance Event Number (Kelsey
et al., 2005), Possibly Correlated T-# (Gold-
finger et al., 2012; Witter et al., 2012),
Depth Interval (cm), facies abbreviation,
Modified Facies (Kelsey et al., 2005), Real
Color Imagery (RGB), CT X-Ray imagery
(CT), CT Density (dn) in dark blue. Upward
fining facies deposits are interpreted as
either hyperpycnite (light blue) or seismo-
turbidite (orange).
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LITHOLOGY EVIDENCE

[1 Sand—Fine to medium, well-sorted beach and dune deposits; redeposited [ 1 0OTsunami—Sharp, eroded contact continuous for metres that
in lake by tsunami as normally graded, landward thinning layers. places layers of sand and / or debris over lake mud; sand and
debris layers contain marine diatoms transported into lake by

[1 Lake mud—Alternating light and dark gray, laminated to massive mud. tsunami

[1 Marine terrace deposits—Fine to coarse, variously sorted sand and gravel

deposited in ancient beach and dune environments, T 0O Shaking—Sharp contact continuous for metres that places layers

of organic mud with detrital debris from littoral areas over lake mud.

“Stratigraphic evidence of disturbances in Bradley Lake sedimentary
record caused by great Cascadia earthquakes and their tsunamis (Kelsey
et al., 2005). (a) Conceptual model of tsunami inundation in a coastal lake
that leaves a sand deposit in the sedimentary record. (b) Debris layers
lacking evidence for tsunami inundation consist of organic mud that inter-
rupts normal laminated lake mud and are inferred to reflect earthquake
shaking that destabilizes basin walls. (c) Photo showing sand deposit inter-
preted to reflect tsunami inundation. (d) Photo showing organic mud layer
inferred to reflect seismic shaking. (e) Topographic profile of coast be-
tween the Pacific Ocean and Bradley Lake. (f ) Stratigraphic profile of Brad-
ley Lake sediment. Blue circles denote evidence for tsunami inundation.
White squares denote evidence for strong shaking without tsunami over-
topping the lake outlet.”
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Tentative correlation diagram comparing Bradley Lake cores BR94E, BR94F, and offshore composite core 30PC/TC. (A) Bradley Lake cores E and F with data plotted left to right: Kelsey Facies (Kelsey et al., 2005), Modified
Facies (this proposal), RGB Imagery, CT Imagery, CT Density, and CT Density from the adjacent core. CT Density data from adjacent core are “flattened” to correlated stratigraphic horizons. On left is an accounting of which
published sedimentary deposits are correlated in these cores (T-# are turbidites, Goldfinger et al., 2012; DE are disturbance events, Kelsey et al., 2005). The form of depositional evidence reported by Witter et al. (2012) is
plotted as blue circles and white squares. Correlation tie lines have symbols related to type of deposit and relative confidence of the correlation (see legend). On right are core geophysical data (CT density and magnetic
core locations plotted as dots (Kelsey et al., 2005). (C) Flattened CT density data for cores E and F.

susceptibility) from core 30PC/TC flattened to core F. (B) Map of Bradley Lake with 1 meter depth contours anc
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“Locking model results. Colors and contours are of the
slip deficit rate, in mm/yr. Slip deficit rate contours are
5,15, 25, 35, and 45 mm/yr. (A) Tapered transition
zone of variable width, depth, and taper but locked to
trench (pnld). (B) Gaussian distribution of locking
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Gorda plate dips to the north possibly due to
Sierra Block migration and the backstop formed
by the Klamath mountains. These and other fac-
tors may contribute to a locked zone that is not
entirely depth dependent (as in Oregon and
Washington).
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Upper left and bottom: east-west uplift rate profiles
from Arcata to Redding based on releveling. The
Arcata data point is actually ~¥30 miles east of Arcata,
so is incorrectly labeled in these two papers (Mitchell
et al, 1994; Wang et al., 2003).

On upper right is a contour map of secular uplift
rates for the CSZ. Contours are generated from tidal
records and leveling profiles. The stippled area is an
interpretation of the region of elastic strain accumu-
lation, assuming that the most rapid uplift at the
surface approximately overlies the down-dip edge of
the portion of the subduction zone interface.
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