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Abstract We present an updated geospatial approach to estimation of earthquake-
induced liquefaction from globally available geospatial proxies. Our previous iteration
of the geospatial liquefaction model was based on mapped liquefaction surface effects
from four earthquakes in Christchurch, New Zealand, and Kobe, Japan, paired with
geospatial explanatory variables including slope-derived VS30, compound topographic
index, and magnitude-adjusted peak ground acceleration (PGA) from ShakeMap. The
updated geospatial liquefaction model presented herein improves the performance and
the generality of the model. The updates include (1) expanding the liquefaction data-
base to 27 earthquake events across six countries, (2) addressing the sampling of non-
liquefaction for incomplete liquefaction inventories, (3) testing interaction effects
between explanatory variables, and (4) overall improving the model’s performance.
We inspected 14 geospatial proxies for soil density and soil saturation; the most prom-
ising of these are slope-derived VS30, modeled water table depth, distance to coast,
distance to river, distance to the closest water body, and precipitation. We found that
peak ground velocity (PGV) performs better than PGA as the shaking intensity param-
eter. We present two models which offer improved performance over prior models. We
evaluate model performance using the area under the receiver operating characteristic
curve, and the Brier score. The best-performing model in a coastal setting uses dis-
tance to the coast but is problematic for regions away from the coast. The second best
model, using PGV, VS30, water table depth, distance to the closest water body, and
precipitation, performs better in noncoastal regions and thus is the model we recom-
mend for global implementation.

Introduction

Soil liquefaction can lead to significant infrastructure
damage after an earthquake, due to lateral ground move-
ments and vertical settlements. Regional liquefaction-hazard
maps are important in both planning for earthquake events
and guiding relief efforts by positioning resources once the
events have occurred. Most liquefaction hazard-mapping
techniques rely on detailed geologic maps and geotechnical
data, such as standard penetration test (SPT) or cone penetra-
tion test (CPT) results, fines content, and water table depth
(Holzer et al., 2006, 2009; Brankman and Baise, 2008),
which are not always available in at-risk regions or with suf-
ficient density and coverage.

We developed a regional liquefaction-mapping approach
that relies on broadly available geospatial parameters (Baise
et al., 2012; Zhu et al., 2013, 2014, 2015). The motivation
for the work comes from the rapid response and loss estima-
tion communities, in which there is a need to predict regional
liquefaction extent for any earthquake around the globe. Our
work builds on previous works, such as Youd and Perkins
(1978), which characterized the relationship between geo-
logic depositional environments and liquefaction susceptibil-
ity, and Wald and Allen (2007), which identified a first-order

approximation of soil conditions from topography. As a di-
rect precursor to our work, Knudsen and Bolt (2011) found
that liquefaction occurrences commonly coincide with
simple geospatial features such as topographic slope and dis-
tance to the closest river. In our previous work (Zhu et al.,
2015), we developed a liquefaction occurrence/nonoccur-
rence database that was unbiased with respect to the spatial
extent (i.e., complete coverage of liquefaction and nonlique-
faction occurrence over the mapped area) using data from
Christchurch, New Zealand, and Kobe, Japan. We tested geo-
spatial parameters as proxies for earthquake loading, soil
density, and soil saturation, and developed a logistic model
(hereafter termed GLM-Zea15g for geospatial liquefaction
model by Zhu et al., 2015; the “g” specifies the global model
from that paper) to predict the probability of liquefaction
after an event. The model provides a first-order estimate
of the spatial coverage of liquefaction from simple geospatial
parameters and can be implemented for loss estimation and
rapid response. Recent work by Matsuoka et al. (2015) has
followed a similar approach for a Japanese liquefaction data-
set, but their work relies on the geomorphological classifica-
tion map of Japan, which is not available globally.
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Although the results of Zhu et al. (2015) demonstrate the
feasibility of the geospatial approach for predicting regional
liquefaction extent, further improvements and refinements
can be achieved with additional data and analysis. GLM-
Zea15g was derived from liquefaction inventories in two
regions, both of which were coastal sedimentary basins, with
an additional qualitative comparison with the liquefaction that
occurred in Port-au-Prince, Haiti. For empirical model devel-
opment, the quality of a database greatly influences the per-
formance of the model. Increasing the number of samples and
sampling a broader range of explanatory variables improves
the generality of the model and therefore improves the perfor-
mance when applying it to make future prediction (Hastie
et al., 2001). The results in recent updates to the empirical
correlations of liquefaction with in situ soil indexes such as
the SPT, CPT, and shear-wave velocity (Cetin et al., 2004;
Kayen et al., 2013; Boulanger and Idriss, 2015) consistently
show that an expanded case history database with increased
sample size and diversity from different earthquake regions
can result in an improved model with reduced overall model
uncertainty. For example, a model may perform well when
developed and assessed with all large-magnitude earthquakes,
but it may perform poorly if it is then applied to small-mag-
nitude earthquakes. Although these geotechnical liquefaction
models are most relevant for site-specific studies, the lessons
learned also apply to our development of a regional geospatial
liquefaction model.

The objective of this article is to improve the perfor-
mance of the geospatial liquefaction model, especially for
generalization across broad geographic regions. The Zhu
et al. (2015) dataset was intentionally limited to spatially
complete inventories so that the probabilities from the model
could inherently represent the spatial extent of the surface
expression of liquefaction. In the updated efforts presented
herein, we expand the liquefaction database for testing and
improving the model. We compiled liquefaction data from
journal articles and reconnaissance reports, from 23 addi-
tional earthquakes from the United States, Japan, China,
Taiwan, and India. We added a combination of datasets with
extensively mapped liquefaction, as well as specific events
from underrepresented geologic regions (inland earthquakes
or dry regions), and events with little to no liquefaction. For
example, the Northridge and Hector Mine, California, earth-
quakes provide samples in relatively dry areas that rarely ex-
perience liquefaction due to the arid climate. We included
earthquakes in which no liquefaction was observed to further
explore the parameter space.

To expand the database, we include inventories that are
not spatially complete. The majority of the added events
were documented as incidences of liquefaction (either as
points or limited polygons) without information on spatial
completeness. This is an artifact of the data collection efforts
from these historical events. A majority of the data collected
is from field investigations without the more systematic cov-
erage provided with remote-sensing techniques. The spa-
tially incomplete nature of the newly added data restricts

our ability to preserve the actual class imbalance (i.e., ratio
of liquefaction occurrence to nonoccurrence), and class
imbalance has a strong influence on the probabilities of the
model (Oommen et al., 2011; Zhu et al., 2015; Thompson
et al., 2016). To address the lack of observations of nonli-
quefaction in many of the newly added inventories, we use
a sampling scheme to sample nonliquefaction data, which is
similar to the one that has been successfully applied in
landslide-hazard mapping by Van Den Eeckhaut et al. (2012)
to address the incompleteness of landslide inventories. By
addressing class imbalance, we significantly expanded our
database, which, in turn, provides the opportunity to con-
strain a more complex functional form with additional model
parameters.

In this article, we first provide the details of the expanded
liquefaction database, including the geospatial parameters
that we compile as candidate explanatory variables. Then,
we describe the modeling process and present two alternative
models. We evaluate our models in terms of mapped liquefac-
tion extent and receiver operating characteristic (ROC)
curves and quantitatively compare the models using statistical
goodness-of-fit measures. Additionally, we compare the
model results with prior regional susceptibility studies in San
Francisco and Seattle.

Data

Liquefaction Database

The expanded liquefaction database includes 27 earth-
quakes from the United States, Japan, New Zealand, China,
Taiwan, and India. Figure 1 shows maps with the locations of
the earthquake epicenters. The details of each event included
in the database are summarized in Table 1. It is important to
note that the liquefaction database consists of inventories
from earthquakes that triggered liquefaction as well as
earthquakes with insignificant or no liquefaction. Building a
well-distributed database of liquefaction and nonliquefaction
locations across a multidimensional parameter space and
geographic space is important for developing a useful and
general model. We ensure a well-distributed database by
sampling a variety of earthquakes in terms of magnitude as
well as geologic setting.

As evident from Figure 1, a majority of the events are
located in coastal areas. We define a coastal event as one
where the liquefaction occurrences are, on average, within
20 km of the coast; or, for earthquakes with insignificant or
no liquefaction, epicentral distances less than 50 km. Based
on these criteria, there are five noncoastal events with ob-
served liquefaction in this database: the 1994 Mw 6.6
Northridge (number 9), 2001 Mw 7.7 Bhuj (number 21),
1999 Mw 7.6 Chi-Chi (number 20), 1999 Mw 7.1 Hector
Mine (number 26—an earthquake with insignificant or no
liquefaction), and 2008 Mw 7.9 Wenchuan (number 27)
events. The data from the Bhuj earthquake were only used
for verification, but not included in the model development,
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because they were from a remote sensing study (Singh et al.,
2002) that lacks validation. Although the Northridge earth-
quake led to shaking in the coastal environment, the mean
distance to the coast for the liquefaction observations was
25 km. A sixth noncoastal event, the 2015 Mw 7.8 Nepal
earthquake, is used for verification but not included in the
database. The low number of noncoastal events is not en-
tirely surprising because the majority of tectonically active
regions are coastal, and liquefaction is known to occur in
coastal sediments (e.g., artificial fill, beach deposits, and al-
luvial and marine sands) as documented by Youd and Perkins
(1978), and numerous well-studied earthquakes, such as the
1989 Loma Prieta (Tinsley et al., 1998), 1995 Hyogo-ken
Nanbu (Hamada et al., 1995), and 2011 Tohoku (Ministry of
Land, Infrastructure, Transport and Tourism [MLITT], 2011)
events. Because the database is biased toward coastal events,
we will investigate the portability of our results outside of the
coastal setting in the Models section.

For the purpose of this article, events can be classified as
complete or incomplete datasets. This is an important distinc-

tion in terms of how the datasets are sampled for liquefaction
and nonliquefaction points. A complete dataset includes
events like the 1995 Kobe (number 3) and the 2010–2011
Darfield and Christchurch (numbers 1 and 2) earthquakes
that are extensively mapped as polygons of liquefaction oc-
currence. In a complete dataset, nonliquefaction points can
be sampled anywhere within the mapped extent that is not
covered by a liquefaction polygon. For our purposes, com-
plete datasets also include well-studied events in which
liquefaction is insignificant or absent. Examples of this in-
clude the 2003 Mw 4.2 Kobe event (number 4) and the
2014 Mw 6.0 Napa (number 24) event. These earthquakes
with insignificant or no liquefaction provide complete data-
sets that are very important for providing coverage of the
parameter space. The first four earthquakes (numbers 1–4)
in the database were used for developing the prior model
(Zhu et al., 2015). Except for the 2010–2011 Darfield and
Christchurch (numbers 1 and 2), and some Japanese events
(numbers 3, 11–18), in which we have access to data in dig-
ital format (see Data and Resources; Wakamatsu, 2011), we

Figure 1. Maps of earthquakes in the liquefaction database from (a) the United States, (b) Japan, (c) New Zealand, and (d) India, China,
and Taiwan. The color version of this figure is available only in the electronic edition.
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obtained the rest of the data in Table 1 by digitizing pub-
lished liquefaction maps (see Table 1 for references).

To illustrate the benefit of adding the earthquakes with
insignificant or no liquefaction to the database, we illustrate
the data space represented by plotting the proportion of
liquefaction occurrences as a function of peak ground veloc-
ity (PGV) and the slope-derived time-averaged shear-wave
velocity to 30 m depth (VS30) in Figure 2. To construct this
figure, we sampled the liquefaction inventories using the
same sampling method described in the Sampling section. In
this figure, white cells indicate no data points in the interval.
As shown in Figure 2a, when the database only contains
earthquakes with extensive liquefaction, there are almost no
data in which PGV is less than 3 cm=s. The lack of data at
low PGV may result in false model predictions for small
events (low PGV) in which liquefaction is not expected to
occur. After adding the earthquakes with insignificant or no
liquefaction (Fig. 2b), the data space for low-PGV values is
sufficiently filled, and the boundary between liquefaction
and nonliquefaction becomes better differentiated (Fig. 2c).

As discussed above, the liquefaction data can be divided
into two groups based on the spatial completeness, and this
categorization impacts how liquefaction and nonliquefaction
points are sampled. The group that is spatially complete con-
sists of the four events used for developing the prior model
(numbers 1–4) and the insignificant-to-no liquefaction com-
plete events (numbers 22–26). The 2011 Tohoku earthquake
(number 19) was spatially complete in a limited region
(MLITT, 2011) but not for the entire affected area, so we
treated it as an incomplete dataset. For this group, liquefaction
observations are represented by polygons and the mapped
extent associated with the liquefaction data is documented.
Because the regions were well studied as evidenced by the
reconnaissance reports and the postevent literature, we can as-
sume that the liquefaction was completely mapped, and there-
fore nonliquefaction can be assumed outside the liquefaction
polygons and within the mapped extent. This type of data is
only available for a few events, generally for which remote
sensing has been incorporated into the postearthquake data
collection or in well-studied regions like the San Francisco

Bay area in the United States or large urban regions in Japan
where the field reconnaissance was extensive.

Regrettably, a majority of events in Table 1 (numbers
5–21) are spatially incomplete and result from limited field
investigations described in the literature. In general, the avail-
able data are mapped liquefaction occurrences, predominantly
represented by points (limited polygons may exist for some
local areas) with limited information about the extent of map-
ping. As a result, additional assumptions are required to obtain
liquefaction nonoccurrence data, as discussed in the Sampling
section.

Geospatial Predictors

In parallel to the liquefaction/nonliquefaction occur-
rence data, we assemble a database of explanatory variables
for use in building the liquefaction models. We consider
explanatory variables that can approximate some of the gov-
erning factors for whether liquefaction will or will not occur:
soil density, soil saturation, and earthquake loading. We only
consider variables that can be easily derived at a global scale,
and so some factors that affect the occurrence of liquefaction
(e.g., soil plasticity) are not considered in our approach.
Table 2 summarizes the explanatory variables that we tested
for the geospatial liquefaction model, which are expanded
from those tested in Zhu et al. (2015). The spatial resolution
for all variables is 30 arcsec.

Soil density is an important liquefaction susceptibility
factor; loose soils are more susceptible than dense soils.
Wald and Allen (2007) demonstrated that soil density is cor-
related with topographic gradient using California, Taiwan,
Utah, and the Mississippi embayment as test cases. Although
recent work has demonstrated that the Wald and Allen (2007)
correlations are less effective in some regions (e.g., Magis-
trale et al., 2012), the method is still appropriate for broad
applicability and is used globally with the U.S. Geological
Survey ShakeMap to estimate soil amplification after earth-
quakes (Worden et al., 2010). We use the digital elevation
model (DEM) from the Global Multi-resolution Terrain
Elevation Data 2010 (see Data and Resources). Several geo-
spatial variables were computed directly from the elevation

Figure 2. Percentage of liquefaction versus nonliquefaction as a function of peak ground velocity (PGV) and VS30 for (a) liquefaction
events, (b) events with insignificant or no liquefaction, and (c) all events in the database. The color version of this figure is available only in
the electronic edition.
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data, such as slope and VS30. Slope is calculated using the
grdgradient command in Generic Mapping Tools software
(see Data and Resources). VS30 is estimated from slope using
the method described in Wald and Allen (2007). We use the
coefficients for active tectonic regions because all the earth-
quakes in the database are in active tectonic regions.

Because surface texture is often used in landform clas-
sifications, we consider three indexes such as roughness,
topographic position index (TPI), and terrain roughness in-
dex (TRI). Roughness is defined as the largest intercell dif-
ference of a central pixel and its eight surrounding cells. TPI
is defined as the difference between a central pixel and the
mean of its eight surrounding cells. TRI is defined as the
mean difference between a central pixel and its eight sur-
rounding cells. They are computed from the DEM using the
gdaldem command in the Geospatial Data Abstraction
Library (see Data and Resources) based on the definitions
described in Wilson et al. (2007). As with the gradient, these
roughness measurements are dependent upon the resolution
of the DEM from which they are derived.

Soil saturation is an important parameter in liquefaction
analyses because the soil has to be saturated or partially
saturated in order to liquefy. Because water flows downhill
and accumulates in streams, rivers, lakes, and oceans, soil sat-
uration is generally correlated with proximity to water bodies
and regional climate conditions. We used saturation proxies
that are derived from topography, climate data, and ground-
water models. We compute distance to the river (dr) using
the rivers from the Hydrological data and maps based on
SHuttle Elevation Derivatives at multiple Scales (Hydro-
SHEDS) database (see Data and Resources), which were de-

rived from topography. We compute the distance to the nearest
coast (dc) from a global dataset computed by National Aero-
nautics and Space Administration (NASA)’s Ocean Color
Group (see Data and Resources). The distance to the nearest
water body (dw) is calculated as the minimum value of dr and
dc. We do not explicitly include proximity to lakes because it
is approximately accounted for in the HydroSHEDS river data
(Lehner et al., 2006). We derive elevation above the nearest
water body (hwater) from the river layer and elevation data.
We use the compound topographic index (CTI; Beven and
Kirkby, 1979) from the HydroSHEDS database (see Data and
Resources). CTI (i.e., wetness index) is calculated as the flow
accumulation divided by the tangent of the topographic slope.

In addition to the saturation proxies derived from topog-
raphy, we also include globally available climate information
as an input to our estimation to differentiate the soil satura-
tion across different climate regions, such as the relatively
dry region affected by the 1999 Mw 7.1 Hector Mine earth-
quake (no liquefaction), versus the wet region affected by the
2001 Mw 6.8 Nisqually earthquake (extensive liquefaction).
The mean annual precipitation for the former region is
∼200 mm, whereas the mean annual precipitation for the lat-
ter region is ∼1200 mm. We consider mean annual precipi-
tation (precip) from the WordClim database (see Data and
Resources) and aridity index (AI) from the Consultative
Group on International Agriculture Research-Consortium
for Spatial Information (CGIAR-CSI) Global Aridity dataset
(see Data and Resources). The global precipitation dataset
was developed by interpolating from over 40,000 weather
stations across the world and averaging over the 1959–
2000 time periods. To incorporate the recent efforts of
large-scale groundwater modeling, we use a global dataset
of water table depth (wtd) from Fan et al. (2013), who mod-
eled groundwater flow using a model constrained by climate,
terrain, and sea level, and calibrated it with over 1.5 million
published records.

Finally, earthquake magnitude and intensity parameters
are important in liquefaction analyses because ground shak-
ing of a contractive soil can lead to pore-water pressure
increase, which is a necessary component of liquefaction.
The effects of earthquake loading are modeled by ground-
shaking parameters and proxies for earthquake duration.
For ground-shaking parameters, we consider peak ground ac-
celeration (PGA) and PGV from ShakeMap (see Data and
Resources), which provides near-real-time estimates of
ground shaking that incorporates macroseismic data as well
as available ground-motion records with ground-motion
prediction equation (GMPE) estimates (Worden et al., 2010).
To approximate earthquake duration, we consider the mag-
nitude-scaling factor (MSF) in Youd et al. (2001).

To demonstrate the typical patterns that these geospatial
explanatory variables exhibit, maps for eight potential
explanatory variables for the San Francisco Bay area and two
shaking variables for the 1989 Loma Prieta earthquake are
shown in Figure 3. Parameters such as VS30, wtd, CTI, and
hwater are correlated with topography and show similar

Table 2
Summary of All Candidate Explanatory Variables

Variable Description
Variable
Name Density Saturation Load

Shear-wave velocity over the
first 30 m (slope derived)

VS30 •

Elevation elev •
Topographic slope slope •
Roughness rough •
Topographic position index TPI •
Terrain roughness index TRI •
Distance to the nearest coast dc • •
Compound topographic
index

CTI •

Global water table depth wtd •
Distance to the nearest river dr •
Distance to the nearest water
body

dw •

Elevation above the nearest
water body

hwater •

Mean annual precipitation precip •
Aridity index AI •
Peak ground acceleration PGA •
Peak ground velocity PGV •
Magnitude Mw •
Magnitude-scaling factor MSF •
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patterns. Also, parameters like dr and dc vary slowly and pro-
vide soil saturation proxy at a lower resolution, as compared to
parameters such as CTI or wtd which vary much more locally.

Methods

Sampling

To create the liquefaction database with liquefaction
occurrence and nonoccurrence, as well as all relevant geo-
spatial explanatory variables, sampling grids are populated at
100 m spacing for each earthquake region in a local Carte-
sian coordinate system. A grid pixel is labeled as liquefaction
when there is a liquefaction point inside the pixel, or 30%
of the grid pixel is covered by a liquefaction polygon.
The 30% threshold is selected to rasterize polygons because

we found that for the spatially complete data, the 30% thresh-
old retains the same liquefaction to nonliquefaction ratio be-
fore and after the rasterization (Zhu et al., 2015). Because the
absence of liquefaction is generally not documented in earth-
quake inventories, we developed a strategy to sample non-
liquefaction data. For a complete dataset in which the
liquefaction data are documented within a mapping extent,
we randomly sample nonliquefaction from the pixels not
covered by a liquefaction polygon. For an incomplete dataset
in which the mapping extent is unknown, we apply circular
buffers around known liquefaction locations to sample non-
liquefaction (illustrated in Fig. 4). This allows for holes in the
sampled regions, which will be determined by the distribu-
tion of the liquefaction locations and the buffer size. We use a
nonsampling buffer immediately around each liquefaction

Figure 3. Maps of candidate explanatory variables: (a) peak ground acceleration (PGA), (b) PGV, (c) VS30, (d) distance to the nearest
coast (dc), (e) distance to river (dr), (f) distance to the nearest water body (dw), (g) water table depth (wtd), (h) compound topographic index
(CTI), (i) mean annual precipitation (precip), and (j) elevation above the nearest water body (hwater) for the San Francisco Bay area. PGA
and PGV are shown for the 1989 Loma Prieta earthquake; all other variables are event independent. The color version of this figure is
available only in the electronic edition.
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point because we do not know the spatial extent of the re-
corded liquefaction feature. The sampling region is defined
as the area outside of the nonsampling buffer and within the
sampling region. After testing a range of buffer widths (see
the Sensitivity Analyses of Sampling Choices section), we
sample nonliquefaction pixels within an area that is 1–15 km
from an observed liquefaction pixel. Figure 4 is a schematic
illustration of the spatial buffer, with a solid circle showing
the boundary of the inner buffer and the dashed line showing
the boundary of the outer buffer. For events with insignificant
or no liquefaction, the sampling region is determined by the
area where the ShakeMap intensities are available.

Logistic Model

We use logistic regression to model the probability of
liquefaction. Logistic regression is a statistical approach that
can be used to describe the relationship of several indepen-
dent variables to a binary dependent variable. The use of the
logistic equation ensures that the resultant probability lies in
the range between zero and one:

EQ-TARGET;temp:intralink-;df1;55;320P�X� � 1

1� e−X
; �1�

in which X � β0 � β1x1 �…� βkxk, x1; x2;…; xk are the
explanatory variables, and β0; β1;…; βk are the coefficients
estimated from the regression. We use the maximum-
likelihood method to obtain these estimates (Kleinbaum
and Klein, 2010).

Sampling Strategy

Because the events in the database were mapped with dif-
ferent levels of detail (polygons vs. points), the number of data
points for an event in the database does not necessarily cor-
relate with the extent of liquefaction that occurred. An event
that includes mapped polygons results in considerably more
data points than an event that only includes liquefaction
points. For example, the 2011 Christchurch earthquake has
8867 data points, whereas the 1989 Loma Prieta event has 789
liquefaction points. To prevent a specific event from dominat-
ing the regression results, we randomly sample 1000 liquefac-

tion points from each event for model development. For an
event in which the number of liquefaction points is less than
1000, we use all the liquefaction points available for that
event. To improve model stability and avoid overfitting, we
resample 50 times for each model and average the model
coefficients. Investigation of the variability of model perfor-
mance and coefficients across different random samples con-
strains the sensitivity to the sampling scheme.

In Zhu et al. (2015), we chose to use an imbalanced
dataset (∼1:13 liquefaction:nonliquefaction) because we
aimed to develop a probability estimator that predicts the
areal extent of liquefaction. In other words, we wanted the
resulting probability to correlate with spatial extent (e.g.,
areas labeled 10% probability of liquefaction will contain
about 10% liquefaction by area). This is only possible for
complete inventories. As discussed in the Introduction, class
imbalance significantly influences the resulting probabilities
from logistic regression models. However, in the current ap-
proach, we include incomplete datasets to improve the gen-
erality of the model. As a result, the class imbalance in the
current database no longer represents the actual class imbal-
ance. As an alternative approach, we can optimize the model
as a model classifier (i.e., discriminating between occur-
rences and nonoccurrences). Many studies have shown that
for several classifiers, a balanced dataset provides improved
overall classification performance compared with an imbal-
anced dataset (Laurikkala, 2001; Weiss and Provost, 2001;
Estabrooks et al., 2004). To minimize the effect of class im-
balance and optimize the database for the development of a
classifier, we sample equal numbers of liquefaction and non-
liquefaction points (e.g., 1000 points each). For events with
insignificant or no liquefaction, we sample 1000 nonlique-
faction points. Sampling so that the full database has a 1:1
class balance is another reasonable approach, but it is not the
choice we made. For events with insignificant or no lique-
faction, the sampling region is such that the ShakeMap inten-
sities are available. In the Interpretation of the Predicted
Probabilities section, we evaluate the interpretation of the
probabilities in terms of expected spatial extent of liquefac-
tion to understand the impact of using a balanced sample.

Modeling Strategy

Our goal is to develop a model that not only fits the avail-
able data well, but will fit new data that were not used to de-
velop the model. Thus, we select a simple model that reflects
as much of the underlying physics of the problem as possible.
Our modeling strategy involves four stages: (1) exploratory
data analysis, (2) interaction assessment, (3) base model selec-
tion (i.e., an initial model that does not account for saturation),
and (4) a stepwise assessment of alternative saturation param-
eterizations. Exploratory data analysis is carried out first be-
cause we think it is important to understand the distributions
and relationships between the liquefaction/nonliquefaction
data and explanatory variables. We plot the histograms of the
liquefaction and nonliquefaction points (for a single set of

Figure 4. Sampling nonliquefaction events using spatial buff-
ers. The color version of this figure is available only in the elec-
tronic edition.
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sampled observations), as well as the estimated probability of
liquefaction over the range of each candidate variable. We use
this to identify gaps in the data space as well as variables that
are strongly predictive.

Next, we assess interaction effects of individual pairs of
candidate variables. This is addressed prior to the final model
selection because if there is evidence of interaction involving
certain variables, then the interaction term (e.g., the product
of two interacting variables) must be considered in the model
selection stage. Then, we establish a base model by selecting
variables that show strong correlations with the probability
of liquefaction. We prefer using a base model to guide the
model selection rather than completely relying on the perfor-
mance measures. Finally, we test the base model with addi-
tional candidate variables to determine if their combinations
can improve the model performance.

In the model selection stage, we evaluate candidate
functional forms on a dataset sampled from the entire data-
base using the described sampling method. There are various
ways to measure the performance of a statistical prediction
model. We use the Brier (1950) score to quantify how close
predictions are to the actual outcome and area under the ROC
curve (AUC), to quantify discrimination (do liquefied loca-
tions have higher predicted probabilities than those that did
not?). The Brier score measures the mean squared difference
between predicted probabilities and actual outcomes. The
Brier score for a model can range from 0 for a perfect model
to 0.25 for a noninformative model. Useful performance met-
rics for binary classifications include the true positive rate
(TPR), which measures the fraction of positive cases that
are correctly classified, and false positive rate (FPR), which
measures the fraction of negative cases that are misclassified
as positive. The ROC curve has proved a useful tool for
evaluating empirical liquefaction models (Oommen et al.,
2010; Maurer et al., 2015). An ROC curve is a plot of
the TPR against FPR at various probability thresholds. For
a given threshold, a model that perfectly predicts the binary
response would have TPR � 1 and FPR � 0. The closer the
ROC curve comes to this ideal case (i.e., the top-left edge
of the plot), the better the model performance. Thus, AUC
is a scalar measure that quantifies the accuracy of the prob-
abilistic classifier, because as the AUC increases the ROC
curve approaches the top-left edge of the plot. The AUC
limits are from 0.5 (random classification) to 1.0 (perfect
accuracy).

Results

Data Exploration

We create a regression dataset from the entire database
using the described sampling method. To explore the data
and understand the correlation between individual explana-
tory variables and the liquefaction and nonliquefaction data,
we present histograms of liquefaction and nonliquefaction
data over the range of each candidate variable (including

transformations) in Figure 5. On the same plots, the ratio
of liquefaction points within each bin is shown as a gray
dot in which the darkness of the gray dot increases with
the number of data points within the bin (the scale is different
for each panel). In other words, the darkness of the point is an
indication of weight. The curve represents a univariate logis-
tic model fit to the data.

In the plots, shaking parameters such as PGA and PGV
are transformed by taking their natural logarithm, because
their distributions are well represented by a lognormal dis-
tribution. Similarly, we use the natural logarithm of VS30.
We notice that the distributions of a few variables are sharply
skewed, such as dc, wtd, elev, TRI, and roughness, with a
greater density of data having values close to zero. As a result
of the skew, the occurrence of liquefaction is more sensitive
to changes in small values than large values. Therefore, we
prefer to apply a square root transformation to increase the
weights of small values. In the Models selection, we consider
the variables both with and without transformation.

In Figure 5, ln(PGA), ln(PGV), ln�VS30�, dw, and pre-
cipitation show strong correlations with the probability of
liquefaction. We observe that ln(PGV) is more evenly distrib-
uted than ln�PGA� and ln(PGV) shows a stronger correlation
with the estimated probability of liquefaction from data. The
estimated probability of liquefaction seems negatively corre-
lated with ln(PGA) and ln(PGV) when PGA is beyond 0:3g
and PGV is beyond 50 cm=s. Magnitude, or a function
of magnitude, sometimes is considered as a factor to scale
PGA (e.g., Youd et al., 2001). However, with our sampling
scheme, the relationship between the probability of liquefac-
tion and magnitude cannot be reliably estimated because the
number of points that are sampled for an event is independent
from the magnitude (i.e., 1000 liquefaction points if available
and 1000 nonliquefaction points). The relationship between
the estimated probability of liquefaction and magnitude that
appears in Figure 5 appears to be an artifact of our sampling,
and cannot be reliably used for prediction. This also appears
to be the case for MSF, which is a function of magnitude.

Interaction Assessment

In Figure 6, we assess the interaction effects between
variables. We construct a 2D image in which the axes are
two of the explanatory variables and the color is the percent-
age of points that liquefied in each bin (bins are only shown
for five or more observations). The bin width is chosen such
that each explanatory variable is divided evenly into 19 bins.
The observations are compared with the predicted probabil-
ities (black lines) from bivariate models with or without in-
teraction terms, which are represented as probability contour
lines on the same image. When this plot is constructed for
two explanatory variables without interaction terms, then the
probability contour lines are straight. The interaction term
allows for the probability contours to curve. Thus, if we add
the interaction term and the contour lines are still essentially
linear (and unchanged from the model without the interaction
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term), then we judge the interaction term to not be significant
enough to include in the model.

In this exploration, we only consider multiplicative in-
teraction terms. We use the interaction between dc and dr as
an example. When dc is small, dr has little effect on the
probability of liquefaction. When dc is large, the probability
of liquefaction significantly decreases as dr increases. Note

that dr does not appear to be a good predictor when it is
evaluated alone (Fig. 5g), but it becomes valuable when com-
bined with dc. As shown in Figure 6b, after adding the in-
teraction term, the probability contour lines become curved
and fit the distribution of data better. This makes sense
because we expect both saturation and soil density to change
as the river approaches the coast. As a second example, we

Figure 5. Histograms of liquefaction and nonliquefaction and the probability of liquefaction observed from the data (gray circles) at
intervals of a variable’s value and the probability predicted from a univariate model. The darkness of the gray dot increases with the number of
data points within the bin (the scale is different for each panel). In other words, the darkness of the point is an indication of weight. The color
version of this figure is available only in the electronic edition. (Continued)
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expect possible interaction effects between VS30 and PGV.
When PGV is less than 3 cm=s, the probability of lique-
faction is zero, and change in VS30 has no effect on the prob-
ability of liquefaction. We find adding the PGV × VS30

interaction term does not help because the interaction
term does not create curvature in the model contours as
shown in Figure 6. Instead, we heuristically assign zero
to the predicted probability for both models when
PGV < 3 cm=s. Similarly, we assign zero to the probability
when VS30 > 620 m=s.

Models

Model Equations. After exploring individual candidate
variables and their interaction effects, we select three varia-
bles to form a base model, which include ln(PGV), ln�VS30�,
and precipitation. We choose these variables because they
show strong correlation with the probability of liquefaction
(Fig. 5b,c,n) and also can be linked to factors such as earth-
quake shaking, soil density, and regional climate, which are
the primary contributors to the physical process of liquefac-
tion. In addition, the model first relies on a preliminary clas-
sification based on PGV and VS30 as discussed above. As
discussed above, we heuristically assign zero to the predicted
probability for both models when PGV < 3 cm=s. Similarly,
we assign zero to the probability when VS30 > 620 m=s.

A potential concern with the selection of PGV over the
more traditional use of PGAwith the MSF correction is that it
does not explicitly account for the number of cycles of load-
ing (or duration, which is generally correlated with magni-

tude). Within this context, we would like to note that the
saturation of PGV scaling with magnitude is less severe than
that for PGA. Thus, one could make the case that because
PGV is more sensitive to magnitude than PGA, it indirectly
accounts for the additional loading due to the longer dura-
tions associated with larger magnitudes. Another concern
with the use of PGV is that GMPEs in some regions (espe-
cially stable continental regions and subduction zones) rarely
include coefficients for evaluating PGV. We still prefer the
use of PGV, however, because (1) it performs best when
compared with our expanded database, (2) our assessment
includes any additional uncertainty in PGV predictions, and
(3) inclusion of PGV in GMPEs is becoming relatively stan-
dard in modern GMPEs and so we expect this issue to dimin-
ish with time.

Another significant contributor to the physical process
of liquefaction is soil saturation; however, there were several
candidate variables for soil saturation that show good corre-
lation with the probability of liquefaction. Therefore, we
focus on assessing the improved performance of the base
model when saturation proxies are added as explanatory var-
iables. We assess the performance of the model using the
AUC and Brier score calculated from a sampled dataset.
We use the same sampled dataset for all three models so that
we can directly compare the performance. The coefficients of
the best performing model (model 1) are given in Table 3. We
also include the coefficients of the global model in Zhu et al.
(2015), which uses magnitude-scaled PGA from ShakeMaps
(PGAM;SM) to account for shaking load. The model perfor-
mance as summarized by the AUC and Brier scores (shown

Figure 5. Continued.
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in Table 3) was comparable across the current dataset:
model 1 has the highest AUC (0.801) as compared to
model 2 (0.788) and GLM-Zea15g (0.755); model 1 has the
lowest Brier score (0.162) as compared to model 2 (0.166)
and GLM-Zea15g (0.232).

Goodness of Fit. The liquefaction data in the database are
primarily derived from earthquakes that have occurred in
coastal environments. There are not many earthquakes with
observed liquefaction that occur far from the coast. Although
model 1 was developed from a database including both
coastal and noncoastal earthquakes, it performs best in the
coastal setting. Model 1 relies on the distance to coast param-
eter as a proxy for saturation and soil density, and we find
this proxy can be problematic for the noncoastal setting be-
cause as the distance to coast increases, the predicted prob-
abilities approach zero. Therefore, we present a second
model (model 2 in Table 3), which is selected from five top-
performing models and performs best in noncoastal events
(defined earlier): 2008 Wenchuan, 1999 Chi-Chi, 1994
Northridge, and 1999 Hector Mine. Model 2 uses wtd and dw
as the saturation proxies.

To compare the models in Table 3 andmake sure that they
are not biased toward a specific event, we summarize the
AUCs of models on individual events in Table 4. Events with
no liquefaction are excluded in the table because both lique-
faction and nonliquefaction are needed to compute AUC. Both
updated models perform well on 16 earthquakes (out of 21
liquefaction earthquakes) with AUC values greater than 0.6.
We compare the AUCs of the two updated models, and the
bold numbers in the table show the AUC of the better perform-
ing model in the two updated models for each event. Although
model 1 performs better than model 2 overall, model 2 out-
performs model 1 on all noncoastal events. Model GLM-
Zea15g outperforms updated models for the 2003 San
Simeon, 2004 Niigata, 2003 Tokachi, and 2001 Bhuj events.
Both updated models perform poorly (AUC < 0:6) for the
2008 Wenchuan, 2001 Bhuj, and 1994 Northridge events.
For the 1965 Puget Sound event, many liquefaction cases with
low probabilities from model 1 occurred in the artificially
filled areas that were not well captured by the geospatial
parameters. In Figure 7, we compare the ROC curve of the
updated model with the previous model in Zhu et al.
(2015). The AUC of the updated model 1 and GLM-Zea15g

Figure 6. Observed percentage of liquefaction versus nonliquefaction as a function of dr and dc0:5 and comparison of probability con-
tours (black lines) from a bivariate model (a) without interaction term and (b) with interaction term. Observed percentage of liquefaction
versus nonliquefaction as a function of PGVand VS30, and comparison of probability contours (black lines) from a bivariate model (c) without
interaction term and (d) with interaction term. The color version of this figure is available only in the electronic edition.
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is 0.801 and 0.755, and the Brier score of the updated model 1
and GLM-Zea15g is 0.162 and 0.232, suggesting that the new
model provides improved accuracy over the old model.

To convert the model to a classifier, we must select a
threshold value to convert from predicted probability to a
classification of liquefaction or nonliquefaction. Lower
thresholds yield higher TPRs and higher FPRs. The thresh-

old value could be determined based on the highest accept-
able FPR. Using the top-performing model (model 1), we
present confusion matrices for three thresholds in Table 5.
A confusion matrix summarizes statistics for four possible
outcomes when comparing a prediction from a binary clas-
sifier with an observation: true positive (top left cell; correct
positive prediction), true negative (bottom right cell; correct
negative prediction), false positive (bottom left cell; incorrect
positive prediction), and false negative (top right cell; incor-
rect negative prediction). For example, using 0.3 as the
threshold, 24.2% of data are liquefied and are correctly clas-
sified as liquefaction. 5.6% of the data liquefied and are in-
correctly classified as nonliquefaction. Using 0.3 as the
threshold gives a TPR (the fraction of positive cases that are
correctly classified) of 0.81, whereas as a threshold of 0.4
gives a TPR of 0.65 and a threshold of 0.5 reduces the TPR
further to 0.42. The FPR (the fraction of negative cases that
are incorrectly classified as liquefied) is 0.34 with a threshold
of 0.3, 0.23 with a threshold of 0.4, and 0.13 with a threshold
of 0.5. These differences in TPR and FPR for different
thresholds help to illustrate the effectiveness of the classifier
and the meaning of the mapped categories when we use this
model to map the probability of liquefaction for an event
(Figs. 8 and 9). A threshold of 0.3 is more conservative in
that it overpredicts liquefaction, whereas a threshold of 0.4 is
a more balanced classifier.

Table 3
Coefficients of Top Performing Coastal Models

and GLM-Zea15g

GLM-Zea15g Model 1 Model 2 Units

Intercept 24.10 12.435 8.801
ln(PGV) 0.301 0.334 cm=s
ln�VS30� −4.784 −2.615 −1.918 m=s
precip 5:556 × 10−4 5:408 × 10−4 mm
ln�PGAM;SM� 2.067 g
������

dc
p

−0.0287 km
dr 0.0666 km
CTI 0.355
dw −0.2054 km
wtd −0.0333 m
������

dc
p

× dr −0.0369
AUC (all events)* 0.755 0.801 0.788
Brier score (all
events)*

0.232 0.162 0.166

AUC (noncoastal) 0.655 0.793 0.811
Brier score
(noncoastal)

0.106 0.091 0.104

We heuristically assign zero to the predicted probability for both models
when PGV < 3 cm=s. Similarly, we assign zero to the probability when
VS30 > 620 m=s. AUC, area under the ROC curve.
*All events in Table 1 except the 2011 Bhuj earthquake.

Table 4
Comparison of the AUCs of Two Updated Models and

GLM-Zea15g over Individual Earthquakes

Earthquake GLM-Zea15g Model 1 Model 2

1989 Loma Prieta 0.620 0.886 0.848
1995 Kobe 0.808 0.862 0.821
2000 Tottori 0.771 0.806 0.775
2011 Christchurch 0.847 0.801 0.770
1978 Miyagi 0.742 0.791 0.801
2003 San Simeon 0.786 0.757 0.775
2010 Darfield 0.642 0.725 0.692
2001 Nisqually 0.684 0.703 0.751
2004 Niigata 0.728 0.678 0.700
2011 Tohoku 0.532 0.677 0.656
1993 Hokkaido 0.711 0.673 0.720
1964 Niigata 0.668 0.667 0.628
1983 Nihonkai 0.647 0.643 0.649
1987 Chiba 0.613 0.608 0.657
1999 Chi-Chi* 0.568 0.603 0.660
1949 Puget Sound 0.578 0.601 0.610
2003 Tokachi 0.578 0.561 0.571
1965 Puget Sound 0.529 0.558 0.548
1994 Northridge* 0.469 0.535 0.547
2008 Wenchuan* 0.546 0.527 0.551
2001 Bhuj* 0.638 0.515 0.537

The bold numbers indicate the AUC for the better performing model
in models 1 and 2. When comparing three models, GLM-Zea15g out-
performs the two updated models for six earthquakes.
*Noncoastal events (average distance to coast of liquefaction

features >20 km).

Figure 7. Comparisons of receiver operating characteristic
(ROC) curves of GLM-Zea15g and the best-performing model
(model 1) with a one-to-one line representing random guessing.
The color version of this figure is available only in the electronic
edition.
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Probability Maps. In addition to the performance metrics, it
is also important that the model predicts the spatial distribution
of liquefaction for the earthquake event. Figures 8 and 9 show
the predicted probability maps (using model 1) for three
United States and five Japan earthquakes in which the ob-
served liquefaction points are shown in black. The spatial pat-
tern of liquefaction for each event is well represented by the
model. Consistent with the confusion matrix, the categories
for probabilities greater than 0.3 show a consistent pattern
with the observed liquefaction. We find for earthquakes with
very large magnitude such as the 2011 Tohoku earthquake, the
model predicts larger areas of high probabilities than the area
where liquefaction was observed. This might be related to the
fact that the observed probability of liquefaction saturates as a
function of ln(PGV) for large PGV values, but the predicted
probability does not (Fig. 5b). The saturation is more severe
when using ln(PGA) as the shaking parameter.

In Figure 10, we show the probability maps calculated
using model 2 for the four noncoastal earthquakes in the
database (2008 Wenchuan, 1994 Northridge, 1999 Hector
Mine, and 1999 Chi-Chi). We also show the model applied

to the 2001 Bhuj and 2015 Nepal earthquakes, which are not
in the database as a further verification of the model. The
model performs well on the 1999 Hector Mine and the
2015 Nepal events. For the 2008 Wenchuan earthquake,
the liquefaction generally occurred near rivers, which
coincide with low probability (0.1–0.3) and some medium
probability (0.3–0.5) areas predicted by the model. For
the 1994 Northridge earthquake, in the epicentral region
in the San Fernando Valley, the model appears to overpredict
because the liquefaction data in our database for this region
are incomplete. Besides the ground failures in the region that
are shown in the figure and included in our database, lique-
faction was also found to contribute too many liquefaction-
related structural failures (Stewart et al., 1994). In the
Granada Hills area on the north of the San Fernando Valley
where many ground failures were observed, the model pre-
dicts low probabilities as a result of the relatively deep water
table depth (>10 m). The observed ground failures in the
area might be a result of dynamic ground compaction of
loose unsaturated surface material, not liquefaction (Stewart
et al., 1994). Outside of the San Fernando Valley, the model

Figure 8. Probability maps predicted from the updated model (model 1) for earthquakes in the United States. The color version of this
figure is available only in the electronic edition.
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predicts high probabilities in Simi Valley on the west and the
coastal area near Marina De Rey on the south, which agree
with the liquefaction observations. For the 1999 Chi-Chi
event, many observed liquefaction points lie in the area with
medium probability. The model overpredicts for coastal
areas, where very few liquefaction occurrences were ob-
served. For the 2001 Bhuj event, model prediction in general
agrees with the extent of liquefaction estimated from change
detection on remote-sensing data. Notwithstanding the above
limitations in identifying individual locations of liquefaction
observations, it is our interpretation that the aggregate per-
formance of the events in Figure 10 is encouraging for a
number of reasons: (1) these are the most challenging events
that the model is likely to face, (2) the extent of the obser-
vations correlates well with the extent/amplitude of the mod-
eled probabilities (i.e., the model indicates the overall extent
of liquefaction for an event even if the exact locations are not
identified), and (3) with the exception of prior models devel-
oped by our research team, there are currently no feasible
alternative models of liquefaction that can be applied glob-
ally, and we have shown that this update is a significant im-
provement over our prior models elsewhere in this article.

Application for Susceptibility. Maps of liquefaction suscep-
tibility which are independent of a specific earthquake
scenario may also be useful for regional liquefaction risk es-
timation. The probability of liquefaction is a function of the set
of explanatory variables X in equation (1), which includes the
event-specific shaking intensity. To create a susceptibility
map, we simply compute X without the intensity (PGV) term.
The resulting number is not an estimate of the probability of
liquefaction, but simply combines the susceptibility terms
together with the coefficients that were determined by our
regression analysis. Thus, the absolute values are not directly
meaningful. We calculate the susceptibility using model 1, and
present the susceptibility as three classes (low, moderate, and
high) in Figure 11 for the San Francisco region as compared to
a geology-based susceptibility map (Witter et al., 2006).
Figure 12 shows a similar comparison between a geospatial
susceptibility map versus a geology-based susceptibility map
for Seattle (Palmer et al., 2004). Although there are some
differences between our model and the geology-based suscep-
tibility maps, we are able to capture similar trends and believe
that these geospatial susceptibility maps can be useful as pre-
liminary information for regional-scale planning.

Figure 9. Probability maps predicted from the updated model (model 1) for earthquakes in Japan. The color version of this figure is
available only in the electronic edition.
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Discussion

Sensitivity Analyses of Sampling Choices

In this study, we apply a sampling method to combine
complete and incomplete datasets into a single database. The
resulting method results in a balanced dataset (50:50). To
fully understand the implications of our sampling method,
we perform sensitivity analyses regarding choices such as the
width of the spatial buffer and the class imbalance. In the
sensitivity analyses, we use a different dataset than what is
described in the Methods section, which was used for regres-
sion. We use a testing dataset that is independent of the
sampling method, which consists of all data points from
the “complete” datasets as defined in Table 1. For example,
0.5–10 km means we sample nonliquefaction points within
the area that is greater than 0.5 km and less than 10 km from
observed liquefaction. We develop models using data that are
sampled using different buffer widths. We compare the per-
formance of the models in terms of the ROC curve in
Figure 13a and find that the AUCs of the models are not sen-
sitive to the buffer widths. The ROC curves in Figure 13 are
different from the ROC curve in Figure 7 because different
testing data are used. Figure 13 shows that the model

performs well on spatially complete events that are used
for testing. Similarly, we study the sensitivity of model per-
formance to the class imbalance as shown in Figure 13b.
We compare the models that are developed using the data
sampled using different liquefaction/nonliquefaction ratios,
and we find that the AUCs of the models are not sensitive
to the class imbalance.

Interpretation of the Predicted Probabilities

The predicted probability from the developed models
can be converted to a classification by applying a threshold,
as demonstrated with the confusion matrix presented in
Table 5. This is useful for predicting liquefaction for a new
event. Optimal thresholds can be chosen based on the accept-
able false predictions. Another way to interpret the probabil-
ity is to predict the spatial extent of liquefaction within a
probability class. In the development of the Zhu et al. (2015)
model, which used spatially complete data, the predicted
probabilities agreed well with the spatial extent. Figure 14
assesses the relationship between the areal percentage of
liquefaction computed with the complete events in the ex-
panded inventory database and the predicted probabilities
from GLM-Zea15g and models 1 and 2. For each model, we

Figure 10. Probability maps predicted from model 2 for the (a) 2008 Wenchuan, (b) 1994 Northridge, (c) 1999 Hector Mine, (d) 1999
Chi-Chi, (e) 2015 Nepal (Moss et al., 2015), and (f) 2001 Bhuj earthquakes. The color version of this figure is available only in the electronic
edition.
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bin the predicted probability and compute the liquefaction
percent, which is plotted in Figure 14 in the center of each
bin, and the 95% confidence interval is illustrated as a ver-
tical line. For GLM-Zea15g, we show a linear model with a
0 intercept and a slope of 0.81. This means that the expanded
database indicates that the probabilities from the GLM-
Zea15g model should be multiplied by 0.81 to estimate
liquefaction percent. We included more events with insignifi-
cant or no liquefaction, which explains why the slope of this
line is not unity even though that was the target of GLM-

Zea15g. For models 1 and 2, we fit a logistic function which
has the same form as equation (1), except that in this case we
found that squaring the denominator improves the fit

EQ-TARGET;temp:intralink-;df2;313;150L�P� � a
�1� be−cP�2 ; �2�

in which L is the areal liquefaction percent, P is the predicted
probability, and the parameters a, b, and c are given in Ta-
ble 6. Equation (2) can either be used to convert the predicted

Figure 11. Susceptibility maps for the San Francisco Bay, California, area from (a) the geospatial model (model 1) and (b) geology-based
mapping (Witter et al., 2006). The color version of this figure is available only in the electronic edition.

Figure 12. Susceptibility maps for the Seattle, Washington, area from (a) the geospatial model (model 1) and (b) geology-based mapping
(Palmer et al., 2004). The color version of this figure is available only in the electronic edition.
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probability to liquefaction percent or to define simplified
classes. For example, to define a class in which the percent
liquefaction is between 10% and 20% from the probabilities
predicted by model 2, one would insert the value of 10 and 20
for L�P� into equation (2) and solve for P with the model 2
coefficients from Table 6, which would yield probabilities of
0.37–0.47.

Applicability of Model to Noncoastal Regions

Although the goal of the geospatial liquefaction model
presented here is for global use, we acknowledge that the
model development was based on earthquakes in coastal re-
gions. Our analysis of model 2 in noncoastal regions pro-
vides promising results; however, uniform performance
across all tectonic environments should not be expected.
For example, the accuracy of predicting VS30 from slope
may be less accurate in glaciated regions (Magistrale et al.,
2012). Model validation and development should continue as
earthquakes occur and additional data become available.

Conclusions

To predict liquefaction extent immediately after an
earthquake worldwide, we need a model that uses widely
available geospatial parameters (e.g., Zhu et al., 2015). In
this article, we update the Zhu et al. (2015) model by (1) ex-
panding the database to include 27 events from six countries,
(2) applying a sampling method to add incomplete datasets,
(3) evaluating new explanatory variables, and (4) testing in-
teraction terms.

In model development, we compare 18 proxies for earth-
quake shaking, soil saturation, and soil density. We find PGV
performs better than PGA as a shaking parameter. The patterns
of saturation proxies show different scales of details. At a
regional scale, distance to the water body performs best. We
find that considering interaction terms between dr and dc im-
proves the accuracy of the model. The model that performs
best over the entire dataset includes PGV, VS30, dr, dc, and
precipitation. The model that performs best over the non-
coastal dataset includes PGV, VS30, wtd, dw, and precipitation.
The updated models offer an improved accuracy as compared
to the Zhu et al. (2015) model. We validate the models and
assess the resulting probability in terms of probability thresh-
olds and the spatial extent of liquefaction. We find that the
mapped probability of liquefaction can be used as an estimate

Figure 13. Sensitivity of ROC curves to (a) spatial buffer and (b) class imbalance with one to one lines (1:1) (diagonal lines) representing
random guessing. The color version of this figure is available only in the electronic edition.

Table 5
Confusion Matrices for Three Thresholds (0.3, 0.4, and 0.5)

for Model 1 Presented in Table 4

Threshold Predicted

P � 0:3 P � 0:4 P � 0:5

L NL L NL L NL

Actual L 24.2 5.6 19.6 10.3 12.5 17.4
NL 24.1 45.9 16.0 54.0 9.2 60.8

TPR = 0.81 TPR = 0.65 TPR = 0.42
FPR = 0.34 FPR = 0.23 FPR = 0.13

L, liquefaction; NL, nonliquefaction; TPR, true positive rate; FPR,
false positive rate.

Table 6
Parameters for Relating Model Probabilities to Areal

Liquefaction Percent

Parameters Model 1 Model 2

a 42.08 49.15
b 62.59 42.40
c 11.43 9.165
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of spatial extent within classes, but should be adjusted due to
the 50:50 class balance used herein. Overall, the footprint and
overall degree of liquefaction is successfully recovered for test
events to a degree that indicates our models should prove use-
ful for global near-real-time applications.

Data and Resources

The liquefaction data used in this article were all com-
piled and digitized from published sources (listed in the
references in Table 1) except the data for the 2010–2011
Darfield and Christchurch earthquakes from the Canterbury
geotechnical database (https://canterburygeotechnicaldatabase
.projectorbit.com, last accessed July 2014). The liquefaction
data that we digitized for 10 earthquakes in the United States,
Japan, China, and Taiwan are available from Zhu et al. (2016).
The electronic data from all of the events in Table 1 in which
the reference isWakamatsu (2011) are available in the CD that
accompanies the book. The ShakeMaps were obtained from
the U.S. Geological Survey earthquake archives (http://
earthquake.usgs.gov/earthquakes/search/, last accessed April
2015). The digital elevation model was obtained from the
Global Multi-resolution Terrain Elevation Data 2010 (http://
topotools.cr.usgs.gov/gmted_viewer/viewer.htm, last accessed
December 2013). River networks and compound topographic
index data were obtained from the Hydrological data and
maps based on SHuttle Elevation Derivatives at multiple
Scales (HydroSHEDS) database (http://hydrosheds.cr.usgs.
gov/dataavail.php, last accessed February 2014). Distance
to the nearest coastline data was computed from the Distance
to the Nearest Coast dataset (https://oceancolor.gsfc.nasa.gov/
docs/distfromcoast/, last accessed January 2014). Mean an-
nual precipitation data were obtained from the WordClim da-
tabase (http://WorldClim.org, last accessed March 2014). The
aridity index data were obtained from the Global Aridity and
PET dataset (http://www.cgiar-csi.org/data/global-aridity-and-
pet-database, last accessed September 2014). Analyses on ge-
ospatial datasets were performed using the Generic Mapping
Tools software (Wessel and Smith, 1998), available at http://

www.soest.hawaii.edu/gmt/ (last accessed October 2014); and
the Geospatial Data Abstraction Library, available at http://
www.gdal.org/ (last accessed September 2015). All other
computations in this article were completed with the open-
source software R (R Development Core Team, 2016) avail-
able at http://www.r-project.org/ (last accessed April 2016).
Figures were prepared using R and Geographic Information
System program ArcGIS, v. 10.
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