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Abstract An ensemble averaging technique is used to remove the long-wavelength topography and
gravity field from subduction zones. >200 residual bathymetric and gravimetric anomalies are interpreted
within fore arcs, many of which are attributed to the tectonic structure of the subducting plate. The
residual-gravimetric expression of subducting fracture zones extends >200 km landward of the trench axis.
The bathymetric expression of subducting seamounts with height �1 km and area �500 km2 (N536), and
aseismic ridges (N>10), is largest near the trench (within 70 km) and above shallow subducting slab depths
(SLAB1.0 <17 km). Subducting seamounts are similar in wavelength, amplitude, and morphology to unsub-
ducted seamounts. Morphology, spatial distributions, and reduced levels of seismicity are considered incon-
sistent with mechanical models proposing wholesale decapitation, and the association of subducting
seamounts with large-earthquakes. Subducting aseismic ridges are associated with uplift and steepening of
the outer fore arc, a gradual reduction in residual bathymetric expression across the inner fore arc, and a
local increase in the width and elevation of the volcanic-arc/orogen. These contrasting expressions reflect
the influence of margin-normal variations in rigidity on where and how the upper plate deforms, both to
accommodate subducting relief and in response to stresses transmitted across the plate interface. The outer
fore arc and arc have lower rigidity due to fracturing and thermal weakening, respectively. Similar associa-
tions with complex earthquakes and fault creep suggest aseismic ridge subduction may also be accommo-
dated by the development and evolution of a broad fracture network, the geometrical strength of which
may exceed the locking strength of a smooth fault.

1. Introduction

The association of subducting seafloor roughness with seismic gaps and the segmentation of subduction
megathrusts was originally made in the 1970s [Sykes, 1971; Kelleher et al., 1973, 1974; Kelleher and McCann,
1976; Spence, 1977], has been recently reviewed by Wang and Bilek [2014], and remains a subject of debate.
Despite a widely held expectation that subducting topographic features should result in strong coupling
and large earthquakes [Cloos, 1992; Scholz and Small, 1997; Kumagai et al., 2012]; most observations show
seamounts [Kodaira et al., 2002; Mochizuki et al., 2008], aseismic ridges [Spence et al., 1999; Bilek, 2010;
Sparkes et al., 2010], and fracture zones [Spence, 1977; Sch€offel and Das, 1999; Robinson et al., 2006] imped-
ing or terminating seismic rupture, and geodetic observations suggest creeping is the predominant mode
of subduction in regions of rough seafloor [Wang and Bilek, 2014]. As demonstrated by the 2007 Mw 8.1 Sol-
omon Islands earthquake [Taylor et al., 2008], there are exceptions where large earthquakes [Protti et al.,
1995; Abercrombie et al., 2001; Bilek et al., 2003; Bilek and Engdahl, 2007; Robinson and Cheung, 2010] and
strong coupling [Wallace et al., 2012] has been associated with subducting topographic relief, but regional
or global syntheses generally show a negative correlation between large earthquakes (Mw� 8) and rough
seafloor [Kelleher and McCann, 1976; Morgan et al., 2008; Sparkes et al., 2010; Kopp, 2013], or the equivalent
positive correlation between large earthquakes and seafloor smoothed by thick sediment volumes [Ruff,
1989; Scholl et al., 2011; Heuret et al., 2012].

The main objective of this study is to place new regional constraints on where subducting topographic fea-
tures are likely present within seismogenic zones, which is important under either seismotectonic scenario
for improving understanding of how bathymetric features subduct and evaluating seismic hazard.

Along strike, there are over 50,000 km of subduction fore arcs on Earth [Bird, 2003]. Most seismo-
genic zones lie underwater making them challenging and expensive regions to study, while
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compounding the dangers of ground shaking with associated tsunami. Most regional studies are thus
conducted by directly comparing seafloor structure seaward of the trench axis with seismological
and/or geodetic inferences of megathrust slip behavior on the landward side [Sparkes et al., 2010;
Wang and Bilek, 2014]. Many structures such as hot-spot generated seamounts, aseismic ridges, and
fracture zones on the subducting oceanic plate are sufficiently linear that approximate locations
within the seismogenic zone can be estimated from their geometry seaward of the trench axis [Rob-
inson et al., 2006; Sparkes et al., 2010]. But the majority of seamounts are not organized in linear
chains [Hillier and Watts, 2007] and assumptions of geometrical continuity across the trench axis are
not always valid [Bassett, 2014]. Gravity-derived models are of limited use, particularly where uncon-
strained by seismic data. Magnetic models are also limited, but have been used to discriminate
between fore-arc seamounts associated with serpentinite diapirism, having little or no magnetic sig-
nature (e.g., Mariana: [Hussong and Uyeda, 1982]), and those associated with positive magnetic
anomalies and subducting seamounts in Costa Rica [Barckhausen et al., 1998], Cascadia [Tr�ehu et al.,
2012], and Hikurangi [Bell et al., 2010]. Direct observations of subducting relief come from seismic
reflection [Ranero and von Huene, 2000; Bangs et al., 2006; Barker et al., 2009; Bell et al., 2010; Singh
et al., 2011] and refraction [Kodaira et al., 2000; Kodaira et al., 2002; Mochizuki et al., 2008] surveys,
but these data are relatively sparse and unevenly distributed. Global grids of bathymetry [IOC, 2003]
and free-air gravity anomalies [Sandwell and Smith, 2009; Sandwell et al., 2014] are the only data sets
uniform in resolution across all subduction zones, but it is often difficult to identify short-wavelength
structure within the high gravimetric and topographic gradients that characterize fore arcs. Earlier
studies have attempted to remove these gradients by calculating trench-parallel gravity [Song and
Simons, 2003] and bathymetric [Bassett, 2014] anomalies, and both Wells et al. [2003] and Song and
Simons [2003] posit relationships between the seismic asperities of great earthquakes with free-air
and trench-parallel gravity anomalies, respectively.

In this study, we extend spectral averaging techniques developed to isolate residual bathymetric anomalies
associated with Louisville Ridge seamounts subducting beneath the Tonga-Kermadec fore arc [Bassett,
2014] to all subduction zones on Earth. We present these results in two parts. Part 1 (this manuscript) is
focused on subducting plate structure and new spatial constraints on the distribution of subducting bathy-
metric features allow relations with slip behavior and mechanical models of relief subduction to be recon-
sidered. Part 2 [Bassett and Watts, 2015] is focused on interrelationships between overthrusting plate
structure with slip-behavior and describes observations relating trench-parallel fore-arc ridges to the dimen-
sions of seismogenic zones. This study is global in focus and the grids developed for each margin are made
available as an electronic supplement and online for future use.

2. Methodology

2.1. Construction of Residual Free-Air Gravity and Topography Grids
Gravity and topography data place important constraints on both shallow and deep crustal structure
and are central to our understanding of the isostatic, nonisostatic (i.e., dynamic) and tectonic proc-
esses that sculpt Earth’s crust and mantle (Figure 1). In this study we analyze the 1 3 1 min satellite-
derived free-air gravity anomaly grid [Sandwell et al., 2014] and the GEBCO 1 3 1 min shipboard
bathymetry grid (Version 2.0) [IOC, 2003]. The 1 3 1 min GEBCO grid does not incorporate satellite-
derived bathymetry data and land elevations are integrated from the Global Land One-km Base Eleva-
tion (GLOBE) project data set [Hastings and Dunbar, 1998]. Free-air gravity anomalies offshore are cal-
culated from radar altimeter measurements of ocean-surface heights and are merged with subaerial
gravity anomalies from the EGM2008 global gravity model [Sandwell and Smith, 2009; Pavlis et al.,
2012]. The recent addition of nonrepeat data from the CryoSat-2 and Jason-1 altimeters has improved
accuracy offshore by a factor of 2–4 and the most recent gravity grid (Version 23.1) has a precision of
�2 mGal [Sandwell et al., 2014].

Across subduction zones, the free-air gravity anomaly and topography fields are dominated by a long-
wavelength high and low associated with the island-arc or orogen and the deep-sea trench, respectively
(Figure 1). The large amplitude of these highs (up to 4 km and 200 mGal relative to the back arc) and lows
(up to 24 km and 2350 mGal relative to the abyssal plain) are well known from early submarine and ship-
board measurements [Vening-Meinesz et al., 1932; Talwani et al., 1959; Talwani et al., 1961; Worzel, 1965;
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Hayes, 1966; Hayes and Ewing, 1970; Watts and Talwani, 1974; Watts and Talwani, 1975] and are similarly
present and well resolved by satellite-derived solutions and altimetry [Sandwell and Smith, 1997; Smith and
Sandwell, 1997; Sandwell et al., 2014].

The fore-arc region of subduction zones separates the peaks of these paired anomalies and is thus charac-
terized by high topographic (mean �3.5�) and gravimetric (mean �2 mGal km21) gradients. These gra-
dients can overwhelm lower-amplitude shorter-wavelength signals, thereby masking considerable detail in
the structure of the fore arc, arc, and back arc. The objective of this paper is to isolate and remove the aver-
age trench-normal profile. This procedure reduces the trench-normal dynamic range, removes the steep
gradients associated with the seaward and landward trench-slopes, and significantly increases the resolv-
ability of short-wavelength lower-amplitude structure.

The process by which this is achieved is illustrated in Figure 2. For each subduction margin, the average
trench-normal profile is calculated by sampling regional grids of bathymetry and free-air gravity anomaly
along trench-perpendicular profiles extending >600 km up and downdip of trench axis and spaced
�25 km along strike. The trench axis is defined as the deepest point using the GEBCO08 bathymetric grid
[IOC, 2003]. A Fast-Fourier-Transform is used to calculate the frequency spectrum of each profile. The aver-
age frequency spectrum is then calculated from the Fourier coefficients at each frequency before an inverse
transform is applied to calculate the ensemble average trench-normal profile for each data set and margin.
The linearity of the Fourier transform and its inverse means spectral averages should be identical to arith-
metic or stacked averages, however, small differences resulting from finite precision of the Fourier trans-
form and associated downsampling are present for small ensembles (< 30 profiles) (supporting information
Figure 1). Maintaining the geometry of the trench, grids of each average profile are created and subtracted
from the original data sets to produce grids of residual bathymetry and residual free-air gravity anomaly. As
opposed to methodologies involving regridding of residuals calculated along profiles, the subtraction of an
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ensemble average grid preserves the full (1 3 1 min) resolution of the original data sets (supporting infor-
mation Figure 2).

Ensemble average profiles of the Airy-Heiskanen isostatic gravity anomaly are also calculated for each mar-
gin and are dashed in gray in Figure 3b. There is a close agreement between the ensemble free-air and iso-
static gravity anomalies and so the long-wavelength component of both anomaly data sets inform us of the
nonisostatic, dynamic, contribution to Earth’s gravity field in subduction zones.
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Figure 2. Figures illustrating the ensemble averaging and grid processing methodology as applied at the Tonga-Kermadec subduction zone. Regional grids of (a–c) bathymetry [IOC,
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2.2. Seismicity
Structural observations from residual gravity and topography anomalies are compared with seismological
and geodetic inferences of megathrust slip-behavior. Many of the regions considered in this study (Figure
1) are characterized by a lack of large magnitude (Mw�8) earthquakes and the Global Centroid Moment
Tensor (GCMT) [Dziewonski et al., 1981; Ekstr€om et al., 2012], Engdahl, van der Hilst, and Buland (EHB) [Eng-
dahl et al., 1998], and International Seismological Center (ISC) (http://www.isc.ac.uk/ accessed January 2015)
earthquake bulletins are integrated with geodetic inferences of plate boundary locking. A large magnitude
earthquake catalog compiled for this study containing the epicenters, seismic asperities, and slip distribu-
tions for over 150 of the largest (Mw 7–9.5) subduction zone earthquakes is presented and analyzed in part
2 [Bassett and Watts, 2015].

We are interested here in earthquakes occurring on the megathrust and extract events of all magnitudes
from the GCMT catalog (period 1976 to July 2013) with thrust faulting mechanisms (T-axis plunge� 45�, P-
axis plunge� 45�), centroid depth� 65 km [Heuret et al., 2011; Hayes et al., 2012], and with strike and dip
within 20� and 15� , respectively, of the subducting SLAB1.0 geometry [Hayes et al., 2012]. The full duration
(1960–2009) and magnitude range (mb� 3) of the EHB catalog is downloaded and reported event times
are used to relocate GCMT centroids to their EHB hypocenters. Unless stated otherwise, earthquake density
is calculated as the number of events with depth� 65 km within a 10 km search radius using the EHB cata-
log for the period 1960–2009 and the reviewed ISC catalog (Mw �3.0) for the period 2010–2012.

3. Global Ensemble Average Profiles

Ensemble average profiles calculated for topography, free-air gravity anomaly, and Airy-Heiskanen isostatic
gravity anomaly (dashed) for each margin are displayed in Figure 3. We also display the global ensemble
average profile that is calculated from, and shown overlying, the stack of average profiles for each margin
segment normalized across distances 300–600 km seaward of the trench axis (Figure 3) [Hatherton, 1969;
Hayes and Ewing, 1970].

Seaward of the trench, ensemble profiles reveal a several hundred kilometer wide belt of free-air gravity
anomalies of 150–60 mGal that mark the Outer Gravity High [Watts and Talwani, 1974]. This gravity anom-
aly is accompanied by a regional rise in topography of several hundred meters. The Outer Gravity High and
steep gravity gradient associated with the seaward wall of the trench are almost entirely fit by the com-
puted gravity effect of topography assuming a water/mantle density contrast of 2270 kg m3 [Watts and Tal-
wani, 1975]; and have been modeled as the flexure of an elastic plate [Hanks, 1971; Watts and Talwani,
1975; Parsons and Molnar, 1976; McAdoo et al., 1978; Bodine and Watts, 1979; Levitt and Sandwell, 1995; Bry
and White, 2007]. Flexure is modulated by the effective elastic thickness (Te) of the subducting lithosphere,
which new analysis suggests is strongly linked with its age [Hunter et al., 2013].

The negative free-air gravity anomaly in the vicinity of the trench, a significant part of which cannot be
explained by isostatic models, is not always coincident with the trench axis and is sometimes displaced
over the landward trench slope due to displacement of crustal materials by low-density sediments. Analo-
gous to the seaward trench slope, the gravity gradient landward of the trench primarily reflects the topog-
raphy of the fore arc; however, the controls on this gradient are more complex. Elastic plate theory [Davies,
1981], shearing of a viscous accretionary wedge [Emerman and Turcotte, 1983], and cohesive Coulomb
wedge theory [Davis et al., 1983; Dahlen, 1984; Dahlen et al., 1984; Dahlen, 1990; Wang and Hu, 2006] have
all been proposed to explain the geometry of the landward trench slope. Viscous-flow models show down-
warping of the overriding plate as a direct consequence of dynamic coupling to the negative buoyancy
force of the subducting slab through the wedge [Zhong and Gurnis, 1992, 1994]. This slab induced down-
warping, however, is broad (>400 km), centered landward of the trench approximately above the slab cen-
ter of mass [Hager, 1984], and is quite different from observed topography. The inclusion of a low-viscosity
wedge in dynamic flow models reduces coupling through the wedge [Billen and Gurnis, 2001, 2003; Billen
et al., 2003] and inclusion of the plate boundary as a fault in viscous flow models is necessary to reproduce
the short-wavelength, high-amplitude near-trench topography [Zhong and Gurnis, 1992; Zhong et al.,
1998]. The gravity effect of the subducting slab beneath the fore arc is small, either because the density
contrast is small or because the slab is regionally compensated at depth [Watts and Talwani, 1975; Davies,
1981].
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Landward of the fore arc, the ensemble profile shows a broad free-air gravity high that decreases by �50
mGal across the back arc (Figure 3b). This shallow gradient is flanked in some, predominantly oceanic-
oceanic, margins by a narrower (100–200 km), large amplitude (>100 mGal) high coincident with the island
arc. These gravity anomalies reflect the combined effects of the topography and compensation of the island
arc, and the dynamics of the back arc.
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The close correspondence between the ensemble average profiles calculated from isostatic and free-air
gravity anomalies (Figure 3b) suggests that the residual gravity-anomaly does indeed represent the
non-isostatic contribution to the trench-normal gravity signal. At short-wavelengths, the residual probably
reflects the fore-arc, arc, and back-arc structure while at long-wavelengths it probably reflects dynamic
processes such as those associated with sinking slabs and flow in the overlying mantle wedge.

4. Interpretations of Subducting Relief

The seafloor is far from uniform and comprises a rich mosaic of volcanic and tectonic structures includ-
ing seamounts [Hillier and Watts, 2007], large igneous provinces [Coffin and Eldholm, 1994], fracture
zones, and aseismic, active and extinct ocean ridges [Matthews et al., 2011]. When carried into subduc-
tion zones, these structures have been shown to modulate seismogenic processes [Kelleher and McCann,
1976; Bilek et al., 2003; Robinson et al., 2006; Mochizuki et al., 2008; Das and Watts, 2009; Sparkes et al.,
2010] and the morphology, subsidence, and uplift history of the fore arc [Lallemand and Le Pichon,
1987; Lallemand et al., 1989; Dominguez et al., 1998; Dominguez et al., 2000; Oakley et al., 2008]. The
morphological imprint on the fore arc is well expressed in grids of residual bathymetry and residual
free-air gravity anomaly. In this section, these observations are presented alongside the relations shown
with seismicity.

5. Seamounts

5.1. The Louisville Ridge Seamount Chain: Tonga Trench Collision Zone
At �26�S, the Tonga trench is intersected by the Louisville Ridge seamount chain [Hayes and Ewing,
1971; Lonsdale, 1986; Watts et al., 1988; Ballance et al., 1989; Koppers et al., 2004, 2012]. West of
Osbourn, which is the oldest unsubducted seamount, the residual bathymetric grid shown in Figure 4a
reveals a 70–80 km wide belt of positive bathymetric anomalies >1 km in amplitude extending 60 km
across the fore arc.

Occupying the trench, the largest anomaly is associated with Mo’unga seamount, which was previously
recognized as a conical, 1.5 km high, and 10 km wide uplift from swath bathymetry data [Lonsdale,
1986; Pontoise et al., 1986; Ballance et al., 1989; Stratford et al., 2015]. The residual bathymetric grid
suggests a NE-SW elliptical geometry for Mo’unga with amplitude >2.5 km and semi-major and semi-
minor axes of �50 and �25 km, respectively. A second smaller residual bathymetric high (amplitude
>1.5 km) is observed NW of Mo’unga. Both highs are located up to �50 km south of the projected
track of the unsubducted Louisville Ridge, along which bathymetric anomalies are typically �1 km in
amplitude.

The Louisville collision zone has been the subject of two recent marine-geophysical research cruises [Greve-
meyer and Flueh, 2008; Peirce and Watts, 2011] and seismic reflection and refraction data calibrate the asso-
ciation of residual bathymetric anomalies with subducting relief. Figure 4c shows two preliminary forward
P-wave velocity (VP) models from Bassett [2014].

Section A-A’ is dip parallel, traverses both Osbourn and Mo’unga, and shows both seamounts to be associ-
ated with a 2–3 km increase in thickness of a layer overlying the subducting Pacific plate crust with VP 4.2–
5.3 km s21. A third increase in layer thickness is modeled at greater depth, beneath the smaller residual
bathymetric high, but this model region is not well constrained.

Section G-G’ is strike-parallel and traverses this smaller high, which is correlated with peaks in free-air grav-
ity (160 mGal) and magnetic (1280 nT) anomalies. This profile reveals a sharp and local reduction in fore-
arc velocity gradient, with seismic wave speeds between 2 and 12 km depth (b.s.f.) >1.0 km s21 slower
than those observed 20 km north and south of the bathymetric high at equivalent depth. A low-velocity
body is modeled above the Pacific plate crust from wide-angle reflections, but wave speeds near the slab–
fore-arc-Moho intersection are not well constrained.

Despite alignment with the unsubducted Louisville Ridge, preliminary analysis of refraction data along
Profile C resolves no subducting seamounts beneath the fore arc [Bassett, 2014]. This velocity-structure
is consistent with the absence of both magnetic and residual bathymetric anomalies. A low-velocity
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Figure 4. (a) Residual bathymetry in the Louisville Ridge-Tonga trench collision zone. Contours of residual bathymetry (500 m) and subducting SLAB1.0 depth (20 km) are shown in fine
gray and black, respectively [Hayes et al., 2012]. The trench axis is dashed in gray. Black dash north of the contemporary collision zone marks the possible extent of seamount subduction
in the last 1 Myr [Ballance et al., 1989]. Note the absence of large bathymetric anomalies within this section of the fore arc. Gray profiles show active source MCS/OBS profiles with the
sections displayed in Figure 4c marked in black. Red dots along these profiles mark the subducting slab–fore-arc-Moho intersection. Historically active volcanoes are shown as red trian-
gles [Simkin and Siebert, 2002]. Figure 4b EHB/ISC earthquake density and hypocenters for GCMT thrust earthquakes. Contours at 200 m increments show the geometry of the Louisville
flexural moat assuming residual bathymetric anomalies in the outer fore arc and the geochemically anomalous arc volcano V [Timm et al., 2013] constrain the geometry of the subduct-
ing portion of the ridge [Bassett, 2014]. Note the correlation between the predicted boundaries of the flexural moat (black dash) with the northern and southern limits of the Louisville
seismic gap (white dash). Figure 4c Preliminary forward P-wave (VP) velocity models of crustal structure along profile segments A-A’ and G-G’ [Bassett, 2014]. The velocity model along
Profile A-A’ is similar to that published by Stratford et al. [2015] and differences are minimal in well-constrained model regions.

Geochemistry, Geophysics, Geosystems 10.1002/2014GC005684

BASSETT AND WATTS CRUSTAL STRUCTURE AND SEISMICITY: 1. SUBDUCTING RELIEF 8



(VP 2.8–5.4 km s21) layer overlying the Pacific Plate crust to 12 km depth is interpreted as subducting
volcaniclastic and pelagic sediments, which accumulate and reach up to 1.5 km thickness in the Louis-
ville Ridge’s flexural moat [Contreras-Reyes et al., 2010].

These wide-angle seismic models and magnetic anomaly modeling in Bassett [2014] support the interpreta-
tion of residual bathymetric anomalies as reflecting the presence of subducting bathymetric relief. The sub-
ducting slab–fore-arc-Moho intersection is marked by red dots in Figure 4a, and this intersection may
spatially limit the expression of subducting bathymetric features in fore-arc morphology.

Morphological characteristics of the Louisville collision zone are accompanied by a sharp 200 km wide
reduction in the number of earthquakes known as the ‘‘Louisville Gap’’ [Habermann et al., 1986; Scholz and
Small, 1997]. Earthquake density plotted in Figure 4b shows this gap centered on large residual bathymetric
anomalies in the outer fore arc, landward which an isolated cluster of thrust earthquakes give the gap a
two-lobbed appearance. This cluster may be analogous to earthquakes observed in-front of subducting sea-
mounts in Japan [Mochizuki et al., 2008] and Cascadia [Tr�ehu et al., 2012]. The absence of geodetic observa-
tions and the short-duration of instrumental earthquake catalogs make it hard to determine if this gap
represents a creeping megathrust, or an interseismically locked seismogenic zone with each lobe capable
of generating a future Mw 8.2 earthquake.

The distribution of magnetic and residual bathymetric anomalies may suggest an approximately East-West
geometry for the subducting segment of the Louisville Ridge [Timm et al., 2013; Bassett, 2014]. This geome-
try is supported by Pb and Sr isotope ratios requiring up to 40% input of Louisville Ridge material into par-
tial melts beneath the arc volcano ‘‘V’’ (Labeled in Figures 4a and 4b); and may also provide one possible
physical explanation for the Louisville seismic gap.

The contours in Figure 4b show the geometry of the Louisville flexural moat calculated in 3-D by extending
the mean cross-sectional structure of the ridge along the westerly geometry implied by the distribution of
residual bathymetric anomalies and using an effective elastic thickness (Te) of 10 km [Contreras-Reyes et al.,
2010]. Correlating each lobe of the seismic gap with each flank of the flexural moat, Bassett [2014] suggest
the locally higher flux of sediment and entrained fluid may reduce the shear strength of the subduction
interface. But thicker sediment volumes have also been linked with large earthquakes [Ruff, 1989; Scholl
et al., 2011] and although these scenarios remain hard to distinguish between, seismic-reflection, and mor-
phological observations showing a significantly greater degree of active and pervasive upper plate exten-
sional deformation within the seismic gap lead us to prefer interpretations where the underlying
megathrust is weak.

5.2. Mariana Arc
The Mariana arc is commonly regarded as the type example of an erosive, extensional, and aseismic sub-
duction margin [Uyeda and Kanamori, 1979; Hussong and Uyeda, 1982]. Residual bathymetry is shown in Fig-
ure 5b. Three large (diameter >50 km, amplitude �2 km) bathymetric anomalies occupy the central
Mariana fore arc and continuity with bathymetric anomalies seaward of the trench axis strongly suggests an
association with subducting seamounts. Along the southern Izu-Bonin trench, the subducting Ogasawara
Plateau is expressed as a 2–3 km uplift of the outer fore arc, the amplitude and along-strike width
(�180 km) of which is well correlated with plateau dimensions seaward of the trench axis. All observations
of subducting relief appear restricted to slab depths �20 km [Hayes et al., 2012], which is similar to 15–
20 km crustal thickness estimates from seismic refraction data across the southern Mariana fore arc [Takaha-
shi et al., 2007].

Figure 5c shows that earthquake density is largest along the southern Mariana megathrust and a
�600 km long segment has ruptured in >70 intermediate magnitude (5�Mw<7) thrust events. No
positive residual bathymetric anomalies are observed within this seismic band, the northern termination
of which is coincident with a large anomaly likely associated with a subducting seamount. Megathrust
seismicity is sparse along the central and northern Mariana arc and all large residual bathymetric
anomalies are characterized by low-earthquake density. The amplitudes, form, and relations with seis-
micity of these anomalies support earlier suggestions that along the Mariana arc, bathymetric relief
onboard the Pacific plate may be subducting intact [Fryer and Smoot, 1985] and aseismically [Wang
and Bilek, 2014].
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One unique characteristic of the Mariana arc is the presence of fore-arc seamounts associated with serpen-
tinite mud diapirism [Fryer et al., 1985; Fryer and Smoot, 1985; Fryer and Fryer, 1987; Fryer et al., 1999; Fryer,
2012]. These seamounts typically occur 30–100 km west of the Mariana trench axis [Fryer and Fryer, 1987],
have little or no magnetic signature [Hussong, 1982], and are associated with the upwelling of serpentinite
muds formed in the mantle wedge as it is hydrated by fluids from the subducting plate [Fryer, 2012]. Loca-
tions where serpentinite seamounts have been sampled since 1981 are shown as red pluses in Figure 5c
(inset) and we note that almost all are near large positive residual bathymetric anomalies. This correlation
supports emplacement mechanisms whereby vertical tectonic movements and fracturing of the overthrust-
ing plate required to accommodate subducting oceanic seamounts provides faults and planes of weakness
along which diapirs of serpentinized ultramafics can rise [Fryer et al., 1985; Fryer and Smoot, 1985].

5.3. Java
Offshore Java (Figure 6), the major bathymetric relief is associated with the Roo Rise oceanic plateau.
The plateau has crustal thickness of 12–18 km [Shulgin et al., 2011], a sharp eastern margin, and a
tiered western margin. The inner boundary defines the western margin of the shallower central seg-
ment of the plateau, which can be tracked across trench axis and associated with a 2 km reduction in
fore-arc water depth. The location of highs and lows within this elevated segment are contiguous with
plateau physiography seaward of the trench axis. Northwest of the Roo Rise, a second residual bathy-
metric anomaly with amplitude >2 km in the outer fore arc is likely associated with an isolated sub-
ducting seamount.

The bathymetric anomalies we associate with subducting relief are limited by the 20 km depth contour of
the subducting slab [Hayes et al., 2012]. This contour is correlated with the location and geometry of the
outer arc high, and the subducting slab–fore-arc-Moho intersection as constrained by wide-angle seismic-
refraction profiles [Kopp et al., 2002; Planert et al., 2010; Shulgin et al., 2011] (Figure 6a).

Figure 5. (a) Bathymetry and (b) residual bathymetry for the Mariana subduction zone. Figure nomenclature as in Figure 4. (c) EHB/ISC earthquake density and GCMT thrust earthquakes.
Note the contiguous band of earthquakes along the southern Mariana trench and the cessation of this band where large residual bathymetric anomalies are observed. Inset shows the
correlation between bathymetric anomalies and locations where serpentinite seamounts have been sampled (red pluses) [Fryer, 2012].
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Thrust earthquakes in Java are sparse, of highly variable mechanism and typically low magnitude. Only two
earthquakes have Mw�7, but these events are significant for being both tsunami earthquakes and widely
cited examples of interactions between earthquakes and subducting seamounts [Masson et al., 1990; Aber-
crombie et al., 2001; Bilek and Engdahl, 2007]. Epicenters and distributed slip models for the 1994 (Mw 7.8)
and 2006 (Mw 7.7) tsunami earthquakes from Bilek and Engdahl [2007] are shown in Figure 6c.

The 2006 earthquake propagated east with slip distributed between the trench and mantle-wedge corner.
Residual bathymetry within the rupture area is typically low (<1 km), although a positive anomaly near the
trench is correlated with a small increase in coseismic-slip (Figure 6c). The close proximity of the eastern
rupture extent to a large residual bathymetric anomaly in the outer fore arc lead us to agree that the 2006
earthquake did not rupture or initiate near a subducting seamount, but was quite possibly arrested by one
[Bilek and Engdahl, 2007].

The 1994 earthquake initiated on the southwestern flank of the largest residual bathymetric anomaly asso-
ciated with the Roo Rise (Figure 6c). This earthquake propagated �120 km east and west of the epicenter,
extending between the trench axis and �40 km depth. A detailed local correlation between coseismic slip
and residual bathymetry is not observed, but we do interpret a regional correlation between the area of
large coseismic slip and the western high-standing block of the plateau. Coseismic slip diminishes between
the tiered western plateau boundaries and we interpret a second correlation between the western extent
of coseismic slip and the outer boundary of the Roo Rise. We agree with existing links between the 1994
earthquake and subducting relief [Abercrombie et al., 2001], but make this link with oceanic plateau rather
than seamount subduction. This distinction may be significant given their contrasting modes of isostatic
compensation and the lower height to length/width ratios of oceanic plateaus, which may influence mega-
thrust roughness.

Figure 6. (a) Residual bathymetry for the Java subduction zone. Figure nomenclature as in Figure 4. Solid black profiles show the geometry of wide-angle seismic refraction profiles pre-
sented in K [Kopp et al., 2002], S [Shulgin et al., 2011], and P [Planert et al., 2010]. Roo 5 Roo Rise oceanic plateau. (b) EHB/ISC earthquake density and GCMT thrust earthquakes. (c) Epicen-
ters and coseismic slip distributions in the 1994 and 2006 tsunami earthquakes [Bilek and Engdahl, 2007].
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5.4. Japan
In 2011 offshore Honshu, Japan, the Mw 9.0 Tohoku-Oki earthquake ruptured �400 km of strike [Ide et al.,
2011; Koketsu et al., 2011; Lay et al., 2011; Simons et al., 2011]. The Pacific plate seafloor adjacent to this rup-
ture area is smooth [Wang and Bilek, 2014], but further south and of significance to this study, subducting
seamounts of the Joban seamount chain have been interpreted near the trench axis [Lallemand et al., 1989;
Nishizawa et al., 2009] and >5 km beneath the fore arc [Mochizuki et al., 2008].

Figure 7. (a) Residual bathymetry for the Japan subduction zone. Figure nomenclature as in Figure 4. Dotted circle shows the interpreted position of a subducting seamount in Mochizuki
et al. [2008]. IC 5 Inubo Cape. TS 5 Ty�oshi spur. (b) EHB/ISC earthquake density and GCMT thrust earthquakes. (c) Geodetic coupling across the Japan-Pacific plate boundary and coseis-
mic slip contours in the 2011 Tohoko-Oki earthquake (max slip 18 m) [Loveless and Meade, 2011]. Gray dots show 2 day aftershocks.
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Residual bathymetry for the Japan trench is shown in Figure 7. In the north, Erimo seamount is observed
seaward of the trench axis and a second residual bathymetric high (�1.5 km) of similar dimensions has
been associated with a subducting seamount [Lallemand and Le Pichon, 1987]. In the southern Japan trench,
residual bathymetric highs with �2 km amplitude are aligned with unsubducted Joban seamounts and can
be tracked >100 km landward of the trench axis. We tentatively interpret a third subducting seamount
beneath the Ty�oshi spur (TS), part of a regional positive anomaly extending from Inubo Cape (IC). The short-
wavelength character of these anomalies is limited by the 30 km slab contour [Hayes et al., 2012] and near
fore-arc crustal thickness estimates (�25 km) [Fujie et al., 2013].

Most thrust earthquakes along the Japan megathrust are distributed between 10 and 50 km depth. In the
EHB/ISC catalog, regions of low recent earthquake density are located: near the trench in northern Honshu
where the outer fore arc is characterized by positive residual bathymetry; north of this region within a
�70 km wide trench-normal bathymetric trough bounded by the Hokkaido continental slope break; and in
regions of active seamount subduction. The seamount we interpret offshore Hokkaido is located in a region
where the outer fore arc has regionally low-earthquake density. The subducting Joban seamounts have sim-
ilarly low-earthquake density, but appear so adjacent to, and define the southward boundary of, a recently
active segment of the megathrust.

In Figure 7c, we show the distribution of seismic coupling on the Pacific plate megathrust prior to the
Tohoku-Oki earthquake, coseismic slip contours from inversion of horizontal displacements [Loveless and
Meade, 2010], and the epicenters of aftershocks occurring within 2 days (gray dots). The region of Joban
seamount subduction was characterized by low coupling before the earthquake, experienced no coseismic
slip, and almost all aftershocks occurred on the megathrust to the north. These observations strongly sup-
port the suggestion of Wang and Bilek [2014] that Joban seamounts subduct via aseismic creep and may
have acted as a barrier to the southward propagation of the Tohoku-Oki earthquake. The absence of large
amplitude residual bathymetric anomalies in the center or northern region of the rupture zone make it
unlikely subducting seamounts were associated with either the nucleation or northern termination of earth-
quake rupture [Zhao et al., 2011].

5.5. Kamchatka
Residual bathymetry for Kamchatka and the western Aleutians is shown in Figure 8. This grid is generated
by calculating the average trench-normal profile from Kamchatka, but extending the removal of this profile
further east and west along the western Aleutian and Kuril trenches, respectively. The subducting Emperor
seamount chain can be identified as a 1–2 km high bathymetric anomaly �200 km landward of the trench
axis and beneath the Kronotsky peninsula (KP in Figure 8a). The landward extent of this anomaly is coinci-
dent with the �40 km slab contour (Figure 8a), and is close to crustal thickness estimates (30–40 km) along
the east coast of Kamchatka from gravity measurements, active source seismic [Bogdanov and Khain, 2000]
and receiver function modeling [Levin et al., 2002].

In the 20th century, the Kamchatka megathrust has ruptured in six large (Mw �7), three great (Mw
�8), and one giant (1952 Mw 9.0) earthquake (Figure 8c) [B€urgmann et al., 2005]. The region adjacent
to the subducting Emperor seamount chain ruptured most recently in the 1997 Mw 7.8 Kronotsky
earthquake, which propagated entirely southwest from an epicenter near the subducting ridge flank.
Aftershock distributions for older events are uncertain, but these also suggest rupture extents restricted
to one side of the subducting ridge, which appears a barrier to rupture propagation. Inversion of hori-
zontal GPS velocities show the region of the subducting Emperor seamount chain to be strongly
coupled [B€urgmann et al., 2005].

The black line in Figure 8b shows the small circle best fitting the locations of Kamchatka arc volcanoes [Eng-
land et al., 2004]. Where the Emperor/Meiji seamounts subduct, arc volcanoes are located �50 km further
landward and have residual bathymetry (�4 km) at least 1 km higher than adjacent arc segments. Geo-
chemical data [Keller et al., 2000; Cottrell and Tarduno, 2003], the change in physiography of the seamount
chain, and the reduction in width of the flexural moat suggest the Hawaiian hotspot may have been close
to a spreading ridge during the formation of Detroit seamount. Subduction of the Emperor seamount
chain may thus be more analogous to aseismic ridge subduction, other examples of which are discussed
below.
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6. Aseismic Ridges

6.1. South-America
The Nazca plate subducts beneath South America at rates increasing from �54 mm yr21 beneath Ecuador
and Columbia to �80 mm yr21 beneath southern Chile [DeMets et al., 2010]. The active Chile Rise intersects
the margin near 45�S and to the north, many of the fracture zones, seamounts, and aseismic ridges on the
Nazca plate have been related to persistent seismogenic segment boundaries [Bilek, 2010; Sparkes et al.,
2010] or the dynamics of individual earthquakes [Barrientos and Ward, 1990; Robinson et al., 2006]. The two
largest bathymetric reliefs are the Nazca and Carnegie aseismic ridges (Figure 9).

Seaward of the trench, the Carnegie Ridge has residual bathymetry up to 3 km in height, crustal thickness
of 14 km [Graindorge et al., 2004], and a width increasing toward the trench axis from 100 km to �300 km.
Over an identical width, the adjacent fore arc has residual bathymetry of similar amplitude (2–3 km). The
surficial expression of the subducting ridge is strongest across the outer fore arc and diminishes entirely
within 90 km of the trench axis. There is no residual bathymetric expression of the Carnegie Ridge across
the inner fore arc, but further landward and analogous to observations made in Kamchatka (Figure 8b), we
note that both the width (�100 km) and elevation (residual bathymetry >2km) of the volcanic arc increases
by a factor >2 relative to adjacent regions.

The Grijalva fracture zone defines the southern boundary of the shallower northern segment of the Nazca
plate, corresponding to a more seismically active segment of the megathrust. Where the Carnegie ridge
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Figure 8. (a) Residual bathymetry for the Kamchatka subduction zone. Figure nomenclature as in Figure 4. The oldest extant seamounts are Detroit (75.8 6 0.6 Ma) and Meiji (>81 Ma)
[Tarduno et al., 2003; Duncan and Keller, 2004; Clouard and Bonneville, 2005]. KR 5 Kronotsky Peninsula. KM 5 Kamchatka Peninsula. (b) EHB/ISC earthquake density and GCMT thrust
earthquakes. (c) Coseismic slip/aftershock zones of large earthquakes (modified from B€urgmann et al. [2005]. Red-filled squares show fault segments accommodating >6 m of slip in the
1952 Mw 9.0 earthquake from tsunami waveform inversion [Johnson and Satake, 1999].
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Figure 9. Aseismic ridge subduction beneath South America. Figure nomenclature as in Figure 4. (a) Residual bathymetry where the Carnegie Ridge subducts. (b) ISC earthquake density
and GCMT thrust earthquakes. (c) Coseismic slip/aftershock zones of large earthquakes (modified from Bilek [2010]. (d) Residual bathymetry where the Nazca Ridge subducts. Gray box
delimits the region shown in Figures 9e–g. (e) ISC earthquake density and GCMT thrust earthquakes. Dashed lines delimit the northern and southern Nazca ridge flanks. (f) Coseismic
slip/aftershock zones of large earthquakes. 2007 earthquake slip distribution from [Bilek, 2010]. (g) Geodetic coupling from Chlieh et al. [2011].
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subducts, thrust earthquakes with Mw� 6 are located landward of residual bathymetric anomalies and have
complex source-time functions [Bilek, 2010]. The southward propagation of large historical earthquakes in
1906 (Mw �8.8) and 1942 (Mw 7.8) was limited by the northern ridge flank [Kelleher, 1972; Collot et al., 2004].

EHB earthquake density is regionally low along the Peru, Ecuador, and Columbia segments of the conver-
gent plate boundary. The ISC catalog, in contrast, shows higher densities where the Carnegie ridge is sub-
ducted, particularly in the outer fore arc near subducting ridge flanks, and near the volcanic arc (Figure 9b).
The different magnitude ranges over which the EHB (mb� 3) and ISC (mb� 2) bulletins are constructed
may suggest this increase in density is from small earthquakes.

The Nazca aseismic ridge is �200 km wide, trench-normal, and has a residual bathymetry high of up to
1.5 km amplitude. Across the fore arc, the surficial expression of the subducting ridge has amplitude up to
2 km, is strongly limited to the outer fore arc and has a width well correlated with ridge physiography sea-
ward of the trench. The volcanic arc terminates east of this region and although the Peruvian Andes have
residual bathymetry up to 1 km higher than the adjacent region further north, it is not clear if this additional
elevation is associated with ridge subduction.

Thrust earthquakes are frequent where the Nazca ridge subducts, most recently occurring in 2007 (Mw 8.0)
near the north-western ridge flank. From inversion of body waves, Bilek [2010] model 2 m of slip near the epi-
center and identify a second broad zone with �1 m of slip aligned with the north-western ridge flank (Figure
9f). Low slip is modeled southeast of this zone, is not required to fit InSAR and GPS observations [Chlieh et al.,
2011] and at depths <50 km the north-western Nazca ridge flank acted as a barrier to rupture propagation.

The southern flank of the Nazca ridge ruptured in 1942 (Mw 8.2) and 1996 (Mw 7.7). The 1942 event is
suggested to be complex, with southward rupture propagation and significant moment release away
from the Nazca ridge [Swenson and Beck, 1996]. The 1996 earthquake had an epicenter on the south-
ern ridge flank and also propagated south rebreaking the deeper portion of the 1942 rupture area
[Chlieh et al., 2011]. Neither earthquake propagated north of the ridge crest and the south-eastern
ridge flank may also act to limit rupture propagation.

Subduction of the Nazca ridge is similarly correlated with an increase in ISC earthquake density (Figure 9e).
The highest densities are near the flanks of the subducting ridge and are separated by a region of lower
density near the ridge-crest.

Bilek [2010] associate the 2007 earthquake with a gap left since the 1687 earthquake, but note that the
�2 m of coseismic slip is an order of magnitude less than the 20 m of relative plate motion accrued. From
interseismic GPS observations, Chlieh et al. [2011] show the megathrust immediately overlying the subduct-
ing Nazca ridge is weakly coupled (creeping) and up to 60% of relative plate motion may be accommo-
dated aseismically (Figure 9g).

Intermediate magnitude thrust events in both of these collision zones are more complex, have longer dura-
tions [Bilek, 2010] and are consistent with observations of rupture complexity in large events [Swenson and
Beck, 1996; Bilek, 2010]. These observations are interpreted as reflecting the structural complexity and lower
rigidity of the megathrust, and correlation with elevated earthquake densities and geodetic observations of
low coupling may suggest that upper plate deformation and small earthquakes accommodate a significant
proportion of relative plate motion where aseismic ridges are subducted.

6.2. Central-America
The subducting plate offshore Costa Rica is extremely rough hosting the Cocos Ridge, Panama fracture
zone, and >10 ridge flanking seamounts. Residual bathymetry in this region is shown in Figure 10.

Seaward of the trench axis, the Cocos Ridge is �200 km wide, �2 km high, and has thicknesses up to 20 km
[Walther, 2003]. Residual bathymetric anomalies associated with this ridge, and a margin normal ridge and
trough associated with the Panama fracture zone, are strongly limited to the outer fore arc within 40–60 km
of the trench axis.

Landward of the Cocos Ridge, the Cordillera de Talamanca (CDT) has residual bathymetry >2 km, is a factor
>2 wider than the adjacent Cordillera de Guanacste (CDG) and Serrania de Tabasara (SDT), and is the high-
est mountain range in Central America (Figure 10a). This observation is analogous to the wider and higher
volcanic arcs landward of the Emperor/Meiji and Carnegie ridges.
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Most thrust earthquakes are distributed across the inner fore arc and landward of large residual bathymetric
anomalies (Figure 10b). Exceptions are a cluster of events aligned with the Panama fracture zone; and a sec-
ond smaller cluster located west of a conical �2 km residual bathymetric high (circled in Figure 10) that is
likely associated with a subducting seamount. A Mw 7.0 event occurred <50 km downdip of this high in
1990 [Bilek et al., 2003] and it is possible this seamount, or a deeper subducting geometrical irregularity,
contributed to the termination of rupture in the 1950 Mw �7.7 earthquake near the eastern Nicoya Penin-
sula (Figure 10c)[Protti et al., 1995].

Historical earthquakes landward of the Cocos Ridge occurred in 1941 (M �7.7) and east of the Panama frac-
ture zone in 1934 (M �7.7) [Kelleher et al., 1973]. Source time functions for recent events in 1983 (Mw 7.4),
1990 (Mw 7.0), and 1999 (Mw 6.9) are complex, consisting of multiple subevents, often at different depths
and/or with different focal mechanisms [Bilek et al., 2003]. This complexity is in stark contrast to the simple
source time function associated with the 1992 (Mw 7.7) tsunami earthquake offshore Nicaragua [Kanamori
and Kikuchi, 1993], which Wang and Bilek [2011] interpret as reflecting the roughness of the subducting
plate and the structural complexity of the megathrust. The distribution of residual bathymetric anomalies
supports this interpretation.

ISC earthquake density is displayed in Figure 10b. Although similar in magnitude to the adjacent Nicaragua
segment, large earthquake densities offshore Costa-Rica extend further downdip and are organized in two
approximately margin normal bands. Analogous to the Carnegie and Nazca ridges, the northwestern band

Figure 10. Aseismic ridge subduction beneath Central America. (a) Residual bathymetry where the Cocos Ridge subducts. Figure nomenclature as in Figure 4. (b) ISC earthquake density
and GCMT thrust earthquakes. (c) Coseismic slip/aftershock zones of large earthquakes [Kelleher et al., 1973; Kanamori and Kikuchi, 1993; Protti et al., 1995; Tajima and Kikuchi, 1995; Bilek
et al., 2003].
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is spatially and geometrically correlated with the flank of the Cocos ridge, and a region of lower earthquake
density is near the subducting ridge crest. The North-South strike of the southeastern band is aligned with
the subducting Panama fracture zone, which may define the southeastern margin of the Cocos ridge at
depth. No large earthquakes are known to have ruptured across the flanks of the subducting Cocos ridge.

7. Fracture Zones: Southern Chile

Fracture zones are aseismic, off-axis, traces of the transform faults that segment mid-ocean ridge systems.
The sediment cover of ocean basins is often sufficient to bathymetrically obscure fracture zones; however,

a)

Aseismic Ridges and contigeous 

bathymetric anomalies

Isolated bathmetric anomalies

h < 0.5 km 

0.5 ≤ h < 1.0 km 

h ≥ 1.0 km, area ≥ 500 km 
2

1

2

3

4

H
ei

gh
t (

km
)

Area (km )
1 10 100 1000 10000 100000

2

b)

0

10

20

30

40

50

60

S
la

b1
.0

 d
ep

th
 (k

m
)

Trench distance (km)
0 20 40 60 80 100 120 140 160 180 200 220 240

c)

Japan
KamchatkaMariana

Figure 12. Global subducting relief. (a) Distribution of residual bathymetric anomalies possibly associated with subducting relief. See Legend. (b) Histograms and scatter plots showing
the height (h) and area of isolated residual bathymetric anomalies potentially associated with subducting seamounts. (c) Histograms and point density plot showing the distribution of
isolated residual bathymetric anomalies with respect to trench distance and SLAB1.0 depth [Hayes et al., 2012].

Geochemistry, Geophysics, Geosystems 10.1002/2014GC005684

BASSETT AND WATTS CRUSTAL STRUCTURE AND SEISMICITY: 1. SUBDUCTING RELIEF 19



basement topography and variations in crustal thickness and petrology usually result in a clear expression
in the gravity field [Robb and Kane, 1975; Fox et al., 1976; Prince and Forsyth, 1988; Matthews et al., 2011].

In Southern Chile, the active Chile Rise is subducted near 45�S and a dense network of ENE striking fracture
zones in the adjacent Nazca and Antarctic plates are clearly expressed in grids of residual free-air gravity anoma-
lies (Figure 11). The largest fracture zones (e.g., Mocha, Valdivia, Guafo, Darwin) are correlated with up to 50 km
steps in the location of the trench axis and can be interpreted up to 300 km further landward (Figure 11b).

The obliquity of most fracture zones with respect to margin-strike decreases across the trench axis in
response to the dip of the subducting slab. Across the fore arc, they are correlated with boundaries
between structural segments characterized by positive or negative/near-zero free-air gravity anomalies and
cusps or transitions in the physiography of the coastline.

Figure 11c shows the distribution of slip in the 1960 Mw 9.5 Chilean earthquake [Barrientos and Ward,
1990]. This giant event ruptured the megathrust between the Mocha and Guamblin fracture zones and the
northern and southern rupture limits are coincident with shallower fore-arc segments, the latter reflecting
subduction of the Chile Rise (SCR). The distributed slip model shows three main asperities and Barrientos
and Ward [1990] noticed that the boundaries between these asperities, and the northern and southern rup-
ture limits, were close to the projected locations of fracture zones. Our constraints on fracture zone geome-
tries and observations of margin segmentation support the suggestion of Barrientos and Ward [1990] that
fracture zones may be an important source of margin segmentation along the southern Chile fore arc.

The influence of fracture zones on the segmentation of subduction boundaries is further demonstrated by
observations in the Aleutian and southern Kuril Islands presented in part 2 of this study.

8. Discussion

It has long been suggested that the tectonic structure of the subducting plate exerts a strong influence on
interseismic and coseismic deformation in subduction zones [Kelleher and McCann, 1976; Spence, 1977], but
the physical and mechanical processes by which tectonic features subduct and the seismological conse-
quences of this interaction remain a subject of debate and contrasting mechanical models have been pro-
posed. One model suggests seamounts are accreted, either by decapitation at some level or by shearing
along their base [Cloos, 1992; Cloos and Shreve, 1996], and act as seismic asperities generating large earth-
quakes within the seismogenic zone [Cloos, 1992; Scholz and Small, 1997]. An alternate model, proposed by
Wang and Bilek [2011, 2014], posits that seamounts subduct more or less intact, with the development of a
dense fracture network near and above the subduction interface resulting in fault conditions favorable for
many small earthquakes and creep, and unfavorable for the nucleation of large earthquakes. It is not possi-
ble in our grids to discriminate between actively subducting and accreted relief, but the morphology and
spatial distribution of bathymetric anomalies we interpret within fore arcs, and the relationships they show
with recent seismicity, may provide constraints discriminating between these models.

8.1. Distribution and Character of Subducting Seamounts
From residual bathymetric grids for all subduction zones on Earth, >200 bathymetric anomalies are identi-
fied within fore arcs that may be associated with subducting relief. Isolated and irregular bathymetric
anomalies are interpreted as subducting seamounts, most of which are similar in wavelength, amplitude,
and morphology to seamounts located seaward of the trench axis.

The area and height (h) of each bathymetric anomaly is estimated by determining the deepest closed resid-
ual bathymetric contour circumscribing the anomaly, before calculating the area and depth difference
between the basal contour and anomaly peak. Most anomalies have height <1 km (Figure 12b) and their
spatial distribution is colored for height and shown in Figure 12a. Anomalies with h�1 km and area
�500 km2 are shown as red dots (N536) and, coupled with aseismic ridges (yellow pluses N>10), represent
our most confident interpretations of subducting relief. Anomalies with 0.5�h>1 km (N596) and h<0.5
(N572) are shown as blue and green dots, respectively and, although more speculative than larger anoma-
lies, in many regions (e.g., Ryukyu, Mexico) the lower amplitude is consistent with seamount heights sea-
ward of the trench axis. A strong correlation is observed between locations of residual bathymetric
anomalies and the bathymetric character of the adjacent subducting plate seafloor, which supports
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assumptions made in existing regional studies
of the influence of bathymetric relief on seis-
mogenic behavior. A catalogue containing
the location, height, area, and volume of each
bathymetric anomaly is provided in support-
ing information.

The histograms in Figure 12c show the distri-
bution of residual bathymetric anomaly peaks
with respect to slab-depth and trench distance.
Most anomaly peaks (95%) are located within
70 km of the trench axis and above regions
where the subducting SLAB1.0 depth is less
than 17 km [Hayes et al., 2012]. The underlying
density plot reflects the full area occupied by
all residual bathymetric anomalies (excluding
aseismic ridges) and reveals a similar restriction
of most anomalies to the shallow and near
trench region of subduction zones. In Japan
and Kamchatka, bathymetric anomalies in line
with the Joban and Emperor seamount chains
are identified >100 km landward of the trench
axis, associated with SLAB1.0 depths �30 km.
These large lateral extents may reflect the shal-
low trajectory of the subducting Pacific Plate
and/or fore-arc crustal thickness.

Density plots showing the distribution of
slab-depths and trench distances associated
with residual bathymetric anomalies for each
active margin segment are shown in support-
ing information. Where known, the depth of
the fore-arc Moho is shown as a dashed red
line, which in Tonga, Java, and Mariana
appears to bound the landward limit of most
residual bathymetric anomalies. These obser-
vations are consistent with the lack of surface
uplift observed above a possible deep (30–
40 km) subducting seamount imaged below
the fore-arc Moho in Sumatra [Singh et al.,
2011]. The isolated and irregular nature of
subducting seamounts makes it difficult to
reliably constrain the dip-parallel extent of
subducting relief. This difficulty is signifi-
cantly reduced for the case of aseismic ridge
subduction.

8.2. Character of Aseismic Ridge
Subduction
Subducting aseismic ridges appear subject to
similar observation limits as seamounts and
large residual bathymetric anomalies are
strongly limited to the outer fore arc. In con-
trast to seamounts, however, where aseismic
ridges subduct it is simpler to assume the
location, width, and height of the subducting
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Figure 13. Aseismic ridge profiles. Profiles showing topography (gray),
ensemble average topography (black), and residual bathymetry
(red 5 gray-black) across five regions of aseismic ridge subduction. The
subducting SLAB1.0 geometry is shown in black (vertical scale com-
pressed) [Hayes et al., 2012]. Vertical black and gray (with arrow) lines
mark the interpreted position of the trench-slope break for the ensemble
average and residual bathymetric profiles, respectively, and illustrate the
reduction in width of the outer-fore arc.
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bathymetric relief from ridge physiography seaward of the trench axis; and in most cases, the assumption
that subducting ridges extend beyond the outer fore arc is likely to be similarly valid. The residual bathy-
metric expression of aseismic ridges can thus be interpreted as constraining the spatial limits over which
subducting bathymetric anomalies directly influence fore-arc morphology, enabling the physical controls
on these limits to be considered.

Figure 13 shows profiles of bathymetry (grey solid line) and residual bathymetry (filled red line) traversing
five subducting aseismic ridges. The ensemble-average profile, calculated across the �250 km of trench
either side of the ridge, is shown in black and reflects the mean structure of the trench slope in the absence
of subducting relief. The subducting SLAB1.0 geometry is also shown in black (note different depth scale)
[Hayes et al., 2012]. These profiles reveal the contrasting architecture of the fore arc in regions of aseismic
ridge subduction.

In general, the amplitude of residual bathymetric anomalies is maintained in the trench axis. The
geometry of the seaward trench slope is parallel to the ensemble-average profile and the outer fore
arc is similarly elevated. The trench-slope break, however, is located 45–70 km (factor >2) nearer the
trench. Relative to the ensemble-average profile, the outer fore arc is steeper and the inner fore arc is
shallower/near-horizontal resulting in a gradual dip-parallel reduction in the bathymetric expression of
the ridge. We thus observe a strong correlation between the location of the trench-slope break, which
occurs 10–50 km landward of the trench axis and above SLAB1.0 depths of 5–15 km, and the land-
ward limit of large residual bathymetric anomalies. The amplitude reduction in ridge expression across
the inner fore arc occurs over �50–100 km and residual bathymetric anomalies converge with ensem-
ble average profiles, indicating there is no expression of the subducting ridge, 80–120 km from the
trench axis.

In Costa-Rica, Ecuador, and Kamchatka, the active volcanic-arc landward of subducting ridges is elevated
relative to adjacent regions by 1.5–2.0 km. The top of the slab beneath the arc/highlands is typically
>60 km deep and near-arc uplift is juxtaposed against the notable absence of residual bathymetric anoma-
lies associated with subducting relief across the inner fore arc.

8.3. Implications for Mechanical Models of Bathymetric Relief Subduction
8.3.1. Interpretation of Aseismic Ridge Profiles
The along-strike extent of outer fore-arc and near-arc uplift indicates both are clearly related to aseismic
ridge subduction, but what might the margin normal transitions illustrated in Figure 13 reflect physically
with regard to the mechanics of bathymetric relief subduction and the properties of the overthrusting
wedge and/or megathrust? One simple interpretation comes from considering the influence of margin nor-
mal variations in rigidity on where and how the upper plate deforms, both to accommodate subducting
relief and in response to stresses transmitted across the plate boundary.

Assuming steady slip of the plate interface against constant resistance, the classical critical wedge theory
predicts a greater surface slope for a stronger basal fault and/or weaker wedge material [Davis et al., 1983;
Dahlen et al., 1984]. The subduction interface beneath the outer wedge is unlikely to be stronger than
beneath the inner wedge and we thus follow Byrne et al. [1988] in interpreting the structural contrast across
the slope break as reflecting the relative strength of materials comprising the inner and outer fore arc. This
interpretation is supported by inferences of rigidity contrasts from normalized thrust earthquake source
durations [Bilek, 2010] and seismic velocities in north Chile [Sallarès and Ranero, 2005], the latter of which
suggest declining pore-fluid pressure and less fracturing of the overthrusting plate across the inner fore arc.
The gradient of the reduction in residual bathymetric amplitudes landward of the slope break (Figure 13)
may reflect the length scale over which the rigidity of the upper plate increases, thereby increasing resist-
ance to buoyancy-driven upward flexure above subducting relief, or may alternatively reflect the increasing
dip of the subduction interface.

In Ecuador (Figure 9b), Peru (Figure 9e), and Costa-Rica (Figure 10b), thrust earthquakes with Mw�6 are
located entirely landward of the trench-slope break and the large residual bathymetric anomalies of the
outer fore arc. This distribution is consistent with dynamic Coulomb wedge theory, which associates the
trench-slope break with the updip transition from aseismic velocity strengthening to seismogenic velocity
weakening behavior on the subduction interface [Wang and Hu, 2006].
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Figure 14. Cartoon illustrating one possible interpretation of the residual bathymetric expression of aseismic ridges. (a) Profiles
showing topography (gray), ensemble average topography (black), and residual bathymetry (red 5 gray-black) where the Carnegie ridge
subducts beneath Ecuador. (b) Near trench uplift is related to the weak and underconsolidated nature of near-trench material and its low
resistance to uplift. Near arc uplift is related to the structural complexity of the megathrust and the higher stresses transmitted through
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sediments.
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The subducting slab beneath volcanic arcs is typically 80–120 km deep [England et al., 2004; Syracuse and
Abers, 2006] and in regions of aseismic ridge subduction always exceeds the thickness of overthrusting
plates. In contrast to uplift of the outer fore arc, the presence of a mantle wedge makes it unlikely that the
additional elevation of arcs is directly associated with the excess topography of subducting ridges and
direct influences of this nature would be expected to also extend across the inner fore arc, which is not
observed. An alternate explanation might be that the added thickness of subducting crust increases the vol-
atile flux to the mantle wedge enabling a greater degree of partial melting, resulting in more arc volcanism
and a larger arc. Landward of the subducting Emperor seamount chain, Klyuchevskoy is the most active arc
volcano on Earth (Figure 8c), but this also is not our preferred interpretation. The forces that drive deforma-
tion at subduction zones are transmitted across the plate interface and we suggest near arc uplift may be
related to the influence of bathymetric relief subduction on the magnitude of these forces.

In the ‘‘breaking through’’ model of Wang and Bilek [2011, 2014], the geometrical incompatibility of subduct-
ing relief is overcome by permanently deforming the surrounding rocks of both the subducting and over-
thrusting plates. At low temperature, the deformation is in the form of pervasive fracturing (Figure 14c),
which is predicted by analog modeling [Dominguez et al., 1998; Dominguez et al., 2000], and likely reflected
in the structural complexity of exhumed subduction zones [Vannucchi et al., 2006] and seismic images in
regions of recent/ongoing seamount subduction [Kodaira et al., 2000; Ranero and von Huene, 2000; von
Huene et al., 2000; Bangs et al., 2006; Bell et al., 2010]. Any change in fault geometry in the slip-direction acts
to resist fault slip and one significant aspect of the breaking through model relates to the strength of the
megathrust. Although creeping faults are typically considered to be weak, and locked faults considered
strong, along a rough fault the breaking and wearing of geometrical irregularities within a broad and inter-
nally complex fracture network likely results in an integrated geometrical resistance against creep that is
likely to be stronger than the locking stress of a smooth fault [Wang and Bilek, 2011, 2014]. Fault strength is
linked to surface heat-flow by frictional heating and from heat-flow observations across 10 subduction
zones, Gao and Wang [2014] show that rough creeping megathrusts dissipate more heat and therefore
tend to be stronger than the smooth megathrusts that generate large earthquakes.

The stresses transmitted through the fore arc may thus be greater in regions where aseismic ridges subduct,
but why is deformation associated with these stresses focused near the volcanic arc? In Kamchatka [Wang,
1996; Kulinich et al., 2007], Sumatra [Sieh and Natawidjaja, 2000], and Nicaragua [Turner et al., 2007], the par-
titioning of oblique convergence onto strike-slip faults coincident with the arc may reflect the higher heat-
fluxes and mechanical weakening of the lithosphere. We suggest thermal weakening may also result in
compressional deformation being focused here, resulting in uplift and broadening of the volcanic arc. This
hypothesis is consistent with higher earthquake densities and the presence of shallow (<25 km) thrust
earthquakes in the overthrusting plate near the Ecuadorian volcanic arc (Figure 9b), and near the Cordillera
de Talamanca in Costa Rica (Figure 10b). It is also consistent with force balance calculations relating the ele-
vation of volcanic-arc/highlands to the horizontal push transmitted through the wedge, and hence the
shear strength of the megathrust [Smith, 1981; Lamb and Davis, 2003; Lamb, 2006].

The inner fore arc separates regions of lower rigidity in the outer fore arc and near the volcanic arc,
providing a stable and relatively strong environment for the formation of fore-arc basins, fore-arc
sliver plates, and accumulation of the elastic stresses recovered in earthquakes.

8.3.2. Interpretation of Seamount Morphology and Distributions
The residual bathymetric anomalies we interpret as subducting seamounts are similar in wavelength, ampli-
tude, and morphology to seamounts observed seaward of the trench axis. These observations are inconsis-
tent with models where the primary mechanical effect of seamount subduction is to increase normal stress
on the subduction interface [Scholz and Small, 1997]. High normal stresses are generated by the flexural
rigidity of the fore arc and such resistance to upward flexure would quickly increase the wavelength and
reduce the amplitude of the bathymetric anomaly observed, making any morphological consistency with
unsubducted seamounts unlikely.

In Figure 4c, we show that residual bathymetric anomalies associated with the subducting Louisville Ridge sea-
mount chain are correlated with a local reduction (VP up to 1 km s21) in fore-arc wave speeds. In the Mariana
fore arc, serpentinite mud volcanoes cluster above large residual bathymetric anomalies associated with
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subducting seamounts (Figure 5b). Both observations support the model of Wang and Bilek [2011, 2014], in
which the subduction of bathymetric relief is accommodated by elevated degrees of upper-plate fracturing.

The form and distribution (Figure 12a) of residual bathymetric anomalies are also considered to be inconsis-
tent with mechanical models proposing wholesale decapitation of subducting seamounts [Cloos, 1992;
Scholz and Small, 1997]. The Mariana trench, for example, is located west of a portion of Pacific Plate charac-
terized by a dense distribution of large (>2 km high) seamounts (Figure 5). Only 3–5, however, are presently
interpreted beneath the fore arc. This density is consistent with the frequency with which seamounts will
enter the trench over the next 5 Myr and a considerably higher density would be expected if a significant
proportion were being accreted.

The ambiguity in identifying regions where seamounts are likely to have recently subducted drops consid-
erably where linear seamount chains are identified. Few seamount chains are parallel with relative plate
motion vectors, causing most collision zones to migrate with time. In Tonga, the rate of southward migra-
tion may be as high as 180 mm yr21 [Lonsdale, 1986; Ballance et al., 1989], suggesting that the fore arc north
and within 180 km of the contemporary collision zone may have been a site of seamount subduction within
the last million years. This region is dashed in Figure 4a and bathymetric anomalies of similar amplitude to
those observed in the contemporary collision zone are not observed. The region to the north may contain
small fragments of broken up seamounts, but identification of isotopic and trace element signatures in arc
lavas requiring up to �40% of a slab-derived Louisville signature in arc volcanoes suggests the bulk of the
Louisville Ridge is subducted [Timm et al., 2013].

In Japan, the collision zone between the Joban seamount chain and the Japan trench is migrating north,
but large residual bathymetric anomalies are not observed south of the contemporary collision zone. This
observation may be interpreted as suggesting seamounts are not accreted, or alternatively, that accreted
seamounts lose all residual bathymetric expression. The later scenario is possible as seamounts lose their
compensation, or are sufficiently fragmented that they lose their competence, but neither are preferred
interpretations.

More generally, Wessel et al. [2010] used satellite-derived bathymetry to predict there may be as many
12,000 large seamounts with height, h, above the surrounding seafloor >1.5 km. Hillier and Watts [2007]
used shipboard bathymetry data to predict there may be as many as 40,000 large (h> 1 km) seamounts,
60% of which remain to be discovered, and >200,000 probable seamounts of varying amplitude
(0.1< h< 6.7 km). Given these populations, if large-scale accretion were a process ubiquitous with sea-
mount collision then the composition of both contemporary fore arcs and ancient subduction zones should
be largely basaltic. Fragments of accreted seamounts in Japan are much smaller than the average dimen-
sions of modern seamounts, which Isozaki et al. [1990] interpret as suggesting the bulk of colliding sea-
mounts are subducted. The metamorphic grade of these fragments suggests deep lower crustal
underplating of seamount material, as opposed to offscraping within an accretionary wedge, as the domi-
nant mode of accretion with less than 1% of samples in the zeolite facies metamorphic grade. These obser-
vations are consistent with models where the majority of seamounts are subducted and while fractured
seamounts may lose small pieces during subduction, as suggested by geochemical observations of rocks
with OIB isotope and trace element signatures within fore arcs [Geldmacher et al., 2008], wholesale accretion
is likely to be rare.

8.4. Influence on Seismicity
We have shown that regions of contemporary seamount subduction are typically associated with
reduced levels of megathrust seismicity. Subduction of the Louisville ridge, for example, is associated
with a 200 km wide gap in shallow (<65 km depth) seismicity, the width, and geometry of which sug-
gest an association with the volcaniclastic filled flexural moat (Figure 4b) [Bassett, 2014]. Seamounts
subducting beneath the central Mariana arc are similarly characterized by low-earthquake density and
appear so against the more seismically active southern segment of the Mariana trench (Figure 5b). Tsunami
earthquakes in Java were influenced by subducting relief, but rather than nucleating from or rupturing across
a subducting seamount, the 2006 Mw 7.7 earthquake appears to have ruptured a comparatively smooth seg-
ment of the plate interface with eastward rupture propagation arrested by a subducting seamount (Figure
6c). A similar situation is observed in Japan and subduction of the Joban seamount chain is characterized by
low-earthquake density, weak interseismic coupling, and may have limited southward rupture propagation
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in the 2011 Mw 9.0 Tohoko-Oki earthquake (Figures 7b and 7c). The strength of conclusions that can be
drawn from these observations is limited by the short duration of instrumental earthquake catalogs, but we
do suggest that holistically, our observations of subducting relief are more consistent with associations with
small earthquakes and creep than with large megathrust events. This translates into the question: how do
bathymetric anomalies subduct aseismically?

The subducting seamounts interpreted above are �1000–3000 km2 in area, have residual bathymetric
elevations �2 km and with respect to wavelength and amplitude, represent the end-member of
subducting seafloor roughness (Figure 15a). At seismogenic depths, the ‘‘breaking through’’ model suggests
that the geometrical incompatibility of this roughness may be accommodated by the development
of an upper plate fracture network, the aseismic evolution of which is described by Wang and Bilek
[2014]. They suggest that cataclasis and pressure solution are the dominant mechanisms facilitating aseismic
creep.

Figure 15. Cartoons summarizing the possible influence of subducting seamounts and aseismic ridges on structure and seismicity in subduction zones. Blue and filled red dash repre-
sents regions of moderate and high-earthquake density, respectively. Dotted black line marks the fore-arc slope break. (a) Subducting seamounts represent seafloor roughness over a
narrow (typically <100 km) wavelength and fore-arc uplift and megathrust complexity are expected over a similar length-scale. The flexural compensation of seamounts may increase
the flux of sediments, potentially reducing the strength of the megathrust and resulting in weak creeping zones either side of the seamount. (b) Aseismic ridges are locally compensated,
resulting in a strong correlation between ridge physiography its influence on seismicity and plate-interface coupling. Megathrust complexity is greatest on the ridge flanks, explaining
high densities of small earthquakes and rupture termination of large earthquakes. The megathrust may be less rough beneath the ridge crest, but remains sufficiently complex to facili-
tate strong creep and drive the additional deformation of the volcanic arc/highlands.
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Within the fracture network, the alternating failure of various parts of the system causes the network to
deform almost continuously. Structural and stress heterogeneities limit the failure dimensions of individual
fractures, resulting in large numbers of small magnitude earthquakes, as indicated by B-values where sea-
mounts subduct offshore Costa Rica as large as �2 [Ghosh et al., 2008]. Extrapolation of high B-values to
low magnitudes implies a large number of brittle events below the resolution of seismometers and breccia-
tion and comminution associated with the fracturing process leads to catalastic flow [Wang and Bilek, 2014].
Highly fractured rocks also allow a wide distribution of fluids, which may facilitate pressure solution creep
occurring on the many block and grain boundaries within the fracture network.

The reduced levels of seismicity we observe may reflect the magnitude completeness of the earthquake
catalogs we analyze with the numerous small earthquakes and microseismicity predicted by this model
likely falling below the resolution (Mw�3) of global earthquake catalogs [Obana et al., 2009; Tr�ehu et al.,
2012]. Where large events are associated with subducting seamounts, these are likely, and have been
shown, to be complex [Bilek et al., 2003; Wang and Bilek, 2011].

Subducting aseismic ridges or other large and laterally contiguous bathymetric features represent seafloor
roughness over a larger scale than subducting seamounts, and the widths of ridges approach the rupture
lengths of large (�Mw 7) megathrust earthquakes (Figure 15b). The steepest gradients, and hence the maxi-
mum seafloor and megathrust roughness, are associated with the ridge flanks and contrary to subducting
seamounts, the lateral continuity of aseismic ridges means they do not have a steep frontal slope during
subduction, except when they first collide with a margin. As a consequence, the plate interface across the
central section of subducting ridges may be comparatively smooth and sufficiently wide that complex large
earthquakes can rupture within this zone. The maximum roughness is associated with subducting ridge
flanks, which may explain the high densities of small magnitude earthquakes and the tendency for earth-
quakes propagating from epicenters above the subducting ridge/plateau to stay within its bounds as is
observed for earthquakes in Java (1994) and Costa-Rica (1941 and 1950). For earthquakes nucleating toward
aseismic ridges, there are many examples of along-strike rupture propagation being arrested near the crest
or flanks of these features [Bilek, 2010; Sparkes et al., 2010]. In South America, Bilek [2010] shows that the
complexity and normalized source duration of moderate magnitude earthquakes (5.5> Mw >7.1) is great-
est on the southern flanks of the subducting Nazca and Carnegie ridges, consistent with our suggestion of
maximum roughness and complexity.

It thus seems likely that the mechanical processes by which oceanic seamounts, aseismic ridges, and oce-
anic plateau subduct are similar, with seafloor roughness promoting upper plate deformation and mega-
thrust complexity enabling creep [Wang and Bilek, 2011, 2014]. In addition to where and the wavelength
over which this roughness occurs (Figure 15), one additional and potentially important distinction between
these features may be the mechanism of isostatic compensation [Watts et al., 2010]. Ridges and oceanic pla-
teau are locally compensated because they formed on or near a mid-ocean ridge crest, which explains the
close spatial correspondence between the residual bathymetric expression of these features and the extent
of their influence on megathrust seismicity, geodetic locking (Dashed lines in Figures 9g and 15b)
[Chlieh et al., 2011], and near arc physiography. Oceanic seamounts, in contrast, are often flexurally compen-
sated providing local depressions where thick packets of volcaniclastic sediment may accumulate (Figure
15a). In Tonga, the width of the Louisville seismic gap is a factor >3 wider than the dimensions of sea-
mounts entering the margin, which Bassett [2014] relate to the width of the flexural moat and the influence
of higher sediment fluxes on the shear strength of the subduction interface (Figure 15a). The influence of
subducting seamounts may thus extend beyond fracturing and deformation of the overthrusting plate, and
what may be as important is their role in facilitating a larger flux of sediment into the seismogenic zone.
This may occur either through subduction of a flexural moat [Bassett, 2014], or by altering the geometry of
the megathrust [Bell et al., 2010].

9. Conclusions

An ensemble averaging technique is developed to isolate and remove the long-wavelength, large-ampli-
tude (�7.5 km and �200 mGal), trench-normal topography and gravity fields associated with subduction
zones. This procedure lowers the dynamic range, removes the steep gradients associated with the seaward
and landward trench-slopes and significantly increases the resolvability of short-wavelength/lower-
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amplitude structure. Application of this technique to all subduction zones on Earth has resulted in the iden-
tification of >200 residual bathymetric anomalies within subduction fore arcs. Isolated anomalies with
height �1 km and area �500 km2 (N 5 36), and aseismic ridges (N> 10), represent confident interpreta-
tions of subducting relief. Subducting fracture zones are resolved by residual free-air gravity anomalies up
to >200 km landward of the trench-axis.

Isolated residual bathymetric anomalies interpreted as subducting seamounts are located near the trench
(within 70 km), at shallow subducting slab depth (SLAB1.0 depth < 17 km) and are similar in wavelength,
amplitude and morphology to unsubducted seamounts seaward of the trench-axis. The morphology and
spatial distribution of subducting seamounts is not consistent with mechanical models proposing wholesale
decapitation and accretion, and the majority of seamounts are likely subducted intact. Subducting sea-
mounts are associated with reduced levels of megathrust seismicity and may have acted as barriers to rup-
ture propagation in large earthquakes in Java and Japan.

Subducting aseismic ridges are associated with uplift and steepening of the outer-fore arc trench-slope,
a gradual reduction in residual bathymetric expression across the inner fore arc, and a local increase in
the width and elevation of the volcanic-arc/orogen. These contrasting expressions may reflect the influ-
ence of margin normal variations in rigidity on where and how the upper plate deforms, both to accom-
modate subducting relief and in response to stresses transmitted across the plate boundary. The outer-
fore arc and near-arc regions may have lower rigidity due to fracturing and thermal weakening, respec-
tively. Subducting aseismic ridges are associated with complex earthquakes and fault creep, and the,
‘breaking through’ model proposed to accommodate the geometrical incompatibility of subducting sea-
mounts may also be applicable to the case of aseismic ridge subduction. This model proposes that bath-
ymetric irregularities subduct by severely deforming and fracturing both the subducting anomaly and
the overthrusting plate. The structural complexity and associated geometrical resistance against slip
within this fracture network results in a strong megathrust and higher stress transmission across the sub-
duction interface. Near-arc uplift landward of subducting ridges may reflect the predicted local increase
in the magnitude of these stresses, which drive deformation that is focused near the arc due to the
higher heat flux. Seafloor and megathrust roughness is greatest on the flanks of aseismic ridges, which
explains the tendency for earthquakes propagating from epicenters within or away from regions of sub-
ducting aseismic ridges to terminate in these regions. The bathymetric expression of subducting ridges
places strong constraints on the lateral extent over which subducting bathymetric anomalies influence
the surface morphology of the fore arc trench-slope. Understanding the physical controls on these limits
is an important subject worthy of future research.
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