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INTRODUCTION
Foreland basin evolution is related to fold-and-

thrust belt propagation. The Amazon basin—the 
world’s largest modern fl uvial basin (Räsänen 
et al., 1992)—is currently an atypical foreland 
basin because the Amazonian foreland basin’s 
three-dimensional confi guration does not follow 
the foreland basin system model of DeCelles 
and Giles (1996). The Amazonian foreland basin 
is divided by the NE-SW–trending structural/
morphologic  Fitzcarrald arch (Räsänen et al., 
1987) in two parts: the northern Amazonian fore-
land basin (Roddaz et al., 2005b) and the southern 
Amazonian foreland basin (Roddaz et al., 2005b; 
Baby et al., 1999), both driven by Andean thrust 
loading. The Fitzcarrald arch corresponds to a 
widespread dissected relief. The Nazca Ridge 
is N45°E trending and oblique to the N78°E 
 present-day plate convergence. It is one of the 
major oceanic ridges subducting below the South 
American plate, with a bathymetric relief of on 
average 1500 m above the adjacent seafl oor of the 
Nazca plate, and has a maximum width of 200 km 
(Woods and Okal, 1994). Ridge subduction sig-
natures have only been tracked in the Pacifi c 
forearc area (von Huene and Suess, 1988; Hsu, 
1992; Macharé and Ortlieb, 1992; von Huene 
et al., 1996; Gutscher et al., 1999a; Le Roux et al., 

2000; Hampel, 2002), but never for the eastern 
Amazonian side of the Andes. The aim of this 
paper is to show relationships between the Nazca 
Ridge subduction and the Fitzcarrald arch in the 
Amazonian foreland basin from the analysis of 
geomorphic markers and lithospheric data.

MORPHOLOGY OF THE 
FITZCARRALD ARCH

The structural/morphologic Fitzcarrald arch 
extends from southern Peru to western Brazil and 
constitutes a major geomorphic feature spreading 
more than 4 × 105 km2 in Amazonia, occurring 
at ~750 km from the trench (Fig. 1). It extends 
east of the Subandean thrust front where no 
thrust deformation occurs (Figs. 1 and 2). The 
Fitzcarrald arch separates the foredeeps of the 
northern Amazonian foreland basin and southern 
Amazonian foreland basin (Roddaz et al., 2005b; 
Baby et al., 1999) and to the east is bounded by 
the subsiding eastern Amazon basin (Kronberg 
et al., 1998). The northern Amazonian foreland 
basin and southern Amazonian foreland basin are 
~120 masl and ~150 masl, respectively, and the 
Fitzcarrald arch has a mean uplifted surface ~600 
masl. The digital elevation model (Fig. 2A) shows 
that the Fitzcarrald arch disturbs the  present-day 
drainage network of the Amazon basin, gener-
ating a radial drainage. The arch defi nes three 
drainage basins: rivers of the northern Ama zonian 
foreland basin to the north, rivers of the eastern 
Amazon basin to the east, and rivers of the south-
ern Amazonian foreland basin to the south. The 

Fitzcarrald arch is incised by these rivers, and the 
oldest outcropping sediments are Neogene in age. 
Recent studies of both sides of the arch (Fig. 2A) 
show Late Miocene tidal deposits (Räsänen et al., 
1995; Hovikoski et al., 2005; Gingras et al., 2002; 
Rebata et al., 2006). These tidal deposits show 
that this part of the Amazonian foreland basin 
was a subsiding foredeep during the Late Mio-
cene. They are currently overlain by Pliocene and 
Quaternary fl uvial deposits. The digital elevation 
model (Fig. 2A) enables us to observe beddings of 
such deposits where they are parallel to the topo-
graphic surfaces. The NW-SE–trending profi le 
of the arch (Fig. 2B) demonstrates that beddings 
organize asymmetrically. On the northwestern 
fl ank of the arch, beddings dip 0.3° northwest-
ward. In contrast, the southeastern fl ank of the 
arch presents several less-tilted beddings dipping 
0.1° to the southeast (Figs. 2A and 2B).

LITHOSPHERIC STRUCTURES
Numerous two-dimensional seismic lines and 

wells have been acquired by oil companies on 
the Fitzcarrald arch because it includes the mas-
sive Camisea gas fi eld (Fig. 2A). To illustrate the 
uplift of the Fitzcarrald arch, we used four seismic 
refl ection profi les (HIS-20, 85-UB-106, TOT-220, 
and 96-MGLP-106) provided by Perupetro S.A. 
to construct a synthetic 340 km long section per-
pendicular to the axis of the arch (Fig. 3). Refl ec-
tors have been calibrated using the Mashansha and 
Panguana wells (see Fig. 2A for location), which 
reach the pre-Mesozoic basement. This composite 
seismic section shows a bulge at a lithospheric-
scale wavelength (340 km minimum). This bulge 
is underlain by 2.5-km-thick Cretaceous and 
Cenozoic strata of nearly constant thickness. Seis-
mic data show Paleozoic structures (Manu arch) 
unconformably overlain by Cretaceous strata. 
The Neogene is partially eroded and exposed in 
both fl anks of the Fitzcarrald arch. No thickness 
variation in the Neogene sediments, which could 
support a synsedimentary Neogene uplift of the 
Fitzcarrald arch, is visible.
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The three-dimensional Wadati-Benioff zone of 
the Nazca slab (Fig. 4), built by hypocenter relo-
cation database from Engdahl et al. (1998), shows 
that the Nazca Ridge buoyancy (Vogt et al., 1976; 
Kelleher and McCann, 1976) controls the dynam-
ics and the geometry of the Nazca slab beneath 
the South American lithosphere (Gutscher et al., 
1999b). The subducting lithosphere descends at 

an angle of ~30° from the trench to a depth of 
100–120 km, then extends horizontally beneath 
the South American lithosphere to sink in the 
upper mantle 700 km farther from the trench. 
The reconstruction of the Nazca Ridge beneath 
the South American lithosphere (Fig. 1) (Hampel, 
2002) indicates that the Nazca Ridge supports 
an ~785-km-long fl at segment reaching the Ama-

zonian foreland basin beneath the Fitzcarrald arch. 
The lithospheric section of the Nazca fl at slab seg-
ment beneath the Andes (Fig. 5B) (Gutscher et al., 
1999b), shows an intermediate-depth seismic gap 
that is interpreted as the subducted continuation of 
the Nazca Ridge (Gutscher et al., 1999b; Hampel, 
2002). The curvature of the Nazca slab linked to 
the buoyant Nazca Ridge segment is of the same 
order of magnitude as, and superimposed on, that 
of the Fitzcarrald arch bulge (Fig. 5A).

TIMING OF THE FITZCARRALD 
ARCH UPLIFT

In the Peruvian forearc, the Nazca Ridge sub-
duction started at 11.2 Ma (Fig. 1) (Hampel, 
2002). Its southward migration between 11°S 
and 17°S has been recorded in the geomorphol-
ogy and sedimentary facies of the forearc and 
accompanied by an uplift of more than 500 m 
of the Pacifi c coast (von Huene and Suess, 1988; 
Hsu, 1992; Macharé and Ortlieb, 1992; Le Roux 
et al., 2000; Hampel, 2002). In the Amazonian 
foreland basin, recent studies (Räsänen et al., 
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Figure 1. Geodynamic setting of the Peruvian 
Andes and its associated Amazonian foreland 
basin. The base map is produced using bathy-
metric data from the Geosat and ERS-1 spacecraft 
(Smith and Sandwell, 1997) and elevation data from 
NASA (National Aeronautics and Space Adminis-
tration) SRTM (Shuttle Radar Topographic Mission) 
Gtopo 30. Note that the western part of the Amazon 
basin consists of two main subsiding basins—the 
northern Amazonian foreland basin (NAFB) and 
the southern Amazonian foreland basin (SAFB)—
separated by the Fitzcarrald arch. To the east, the 
Fitzcarrald arch is bounded by the eastern Ama-
zon basin (EAB). This arch is superimposed on the 
present-day reconstruction of the subducted part 
of the Nazca Ridge (Hampel, 2002, modifi ed). The 
ridge reconstruction at 11.2 Ma is shown (Hampel, 
2002). The easternmost edge of the Nazca Ridge 
represented by dotted line is not involved in the fl at 
slab segment. The black dashed line (E–F) locates 
the deep seismicity section of Figure 5. Depth con-
tours to Wadati-Benioff zone are from Gutscher 
et al. (1999b), and plate convergence vector is from 
Gripp and Gordon (2002).
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Figure 2. A: Digital elevation model of the Fitzcarrald 
arch (DEM SRTM 90 m from NASA data). The arch 
is characterized by a radial drainage network (white 
arrows) that defi nes the northern Amazonian foreland 
basin (NAFB), southern Amazonian foreland basin 
(SAFB), and eastern Amazon basin (EAB). White 
lines show the location of the seismic lines used to 
build the composite seismic section (C–D) of Figure 
3. Cross-points MW and PW locate the Mashansha 
and Panguana wells, respectively. Bedding bound-
aries are indicated by black lines with bars toward 
the scarp. Stars indicate study zones of Neogene 
outcrops: black stars from Hovikoski et al. (2005), 
white stars from our study. B: Topographic profi le 
(dashed white line A–B) perpendicular to the axis of 
the arch showing the asymmetric shape of the arch. 
The asymmetric shape of the arch is demonstrated 
by bedding dip where parallel to the topography 
(gray lines). The scarps are numbered from 1 to 7.
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1995;  Gingras et al., 2002; Hermoza et al., 2005; 
Hovikoski et al., 2005; Roddaz et al., 2005a; 
Rebata et al., 2006) show that during the Late 
Miocene, the Amazonian foreland basin consti-
tuted a four-component foreland basin system 
sensu DeCelles and Giles (1996). Sedimento-
logic data indicate that the Fitzcarrald arch uplift 
did not exist in the Late Miocene. The Fitzcarrald 
area was included in the subsiding foredeep 
depozone and subject to marine incursions. The 
occurrence of the fl at slab segment, linked to the 
Nazca Ridge subduction (Gutscher et al., 2000), 
has been correlated with the cessation of arc vol-
canism activity (Nur and Ben-Avraham, 1981; 
McGeary et al., 1985; Gutscher et al., 2000). In 
the Peruvian Andes adjacent to the Amazonian 
foreland basin, arc volcanism ceased 4 m.y. ago 
(Soler and Bonhomme, 1990; Rosenbaum et al., 
2005). The fl attening process propagates from 
the trench eastward to the previously subducted 
segment of the oceanic lithosphere. As the ces-
sation of arc volcanism occurred 4 m.y. ago in 
response to fl at slab subduction, it is unlikely that 
the Fitzcarrald arch uplift is older than 4 Ma.

Geomorphic and lithospheric data show that 
the uplift of the long-wavelength Fitzcarrald arch 
is due to the subduction of the buoyant Nazca 
Ridge. As a result, the fl exure of the South Amer-
ican lithosphere is overcompensated (Fig. 4), and 
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mentary basins and pre-Cretaceous structures 
(Manu arch). These structures present a wave-
length of ~100 km. Seismic profi le demonstrates 
that these older structures have been eroded and 
sealed by Cretaceous strata, and subsequently 
uplifted and involved in the larger structure of 
the Fitzcarrald arch. NAFB—northern Ama zonian 
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Figure 4. Three-dimensional lithospheric-scale diagram of the Nazca 
slab and the South American plate. The perspective view looks toward 
the northwest (with the Andes in the middle, the Amazon basin to the 
right, and the Nazca plate to the left). The Nazca slab geometry is built 
from hypocenter relocation database of Engdahl et al. (1998). Bathy-
metric data of the Nazca plate from the Geosat and ERS-1 spacecraft 
(Smith and Sandwell, 1997), and elevation data of South America from 
NASA SRTM Gtopo 30. The Nazca Ridge reconstruction from  Hampel 
(2002) has been draped onto the Nazca slab. The Nazca fl at slab seg-
ment (Gutscher et al., 1999b) reaches the Amazonian foreland basin 
and overcompensates the thrust loading fl exure of the South Ameri-
can lithosphere. It induces an eastward shift of the dynamic loading 
mantle processes coupled to the subducting slab, generating pro-
nounced subsidence in basins all around the arch, in the northern 
Amazonian foreland basin (NAFB), southern Amazonian foreland 
basin (SAFB), and eastern Amazon basin (EAB).
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a four-component foreland basin system has been 
unable to form since 4 Ma. The recent deforma-
tion of the Fitzcarrald arch is characterized by 
vertical motions as recorded by the radial modern 
drainage network and the opposite dips of recent 
fl uvial deposits on both sides of the arch.

CONCLUSIONS
The Fitzcarrald arch uplift occurred since 

4 Ma in response to the Nazca Ridge fl at sub-
duction. The Nazca Ridge fl at subduction is 
responsible for the atypical three-dimensional 
geometry of the Amazonian foreland basin and 
separated the northern Amazonian foreland 
basin from the southern Amazonian foreland 
basin. Present-day rapid and large rates of sub-
sidence are observed in the northern Ama zonian 
foreland basin, southern Amazonian foreland 
basin, and eastern Amazon basin (Räsänen 
et al., 1987; Kronberg et al., 1998; Baby et al., 
1999; Aalto et al., 2006). The Nazca Ridge fl at 
subduction will disturb mantle fl ow beneath 
the Amazon basin (Fig. 4), thus creating addi-
tional dynamic loading (Mitrovica et al., 1989; 
 Pysklywec and Mitrovica, 2000). This control 
of the Amazonian foreland basin geometry by 
the fl at subduction of the Nazca Ridge might 
be one of the decisive factors that triggered 
modifi cation of large-scale sedimentological 
and hydrological processes in the Amazon 
basin during the last 4 m.y.
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