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Conclusions

 1) at least one earthquake may be lim-
ited to the Eel River region.
 2) at least one earthquake may  be lim-
ited to north of the Eel River region.
 3) not all paleoenvironmental elevation 
ranges have been sampled.
 4) not all earthquake related strata have 
age control (or age control is of low qual-
ity).
 5) Terrestrial RI estimates from individual 
paleoseismic investigations need to be 
combined in order to evaluate the entire 
record.

Conclusions

 1) interseismic deformation suggests 
upper plate deformation is complex in 
northern CA (locked zone boundaries are 
probably more easterly than Fluck/Wang 
models)
 2) subsidence is likely due to upper plate 
deformation (while we may expect CSZ co-
seismic uplift south of CC)
 3) upper plate ruptures are likely coinci-
dent with CSZ rupture, so records of upper 
plate subsidence can be used as a proxy 
for CSZ recurrence
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What can we conclude?

Option A: All terrestrial events are 
unique.

Option B:  Fewer events recorded 
on land, possibly selectively ar-
chiving the largest events. What is 
the Mw threshold for recording an 
event? (Nelson et al, 1996 suggest 
we need ~1m subsidence in order 
to detect the subsidence)
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Age Relations

Radiocarbon Ommission 
Rationnale

1) For maximum limiting ages: keep only ages within 2 sigma error 
of the youngest age.

2) Inverted ages are removed.

3) Bulk peat ages carry less weight than identifiable plant mate-
rial, yet are in times the only age control available.

Project Location
Surveyed
Elevation
Control?

Biostratigraphy?
All Events 

Dated and 
Correlated?

14C Limitations1 Descriptive
Limitations2

Scientific
Value of 
the Site3

Prioritization for 
Conducting

Additional Studies

Crescent City marsh no diatoms no N,L A 1 5

Lagoon Creek no diatoms yes I A 3 12

Mad River Slough no radiolarians yes B,L,I S 1 1

Arcata Marsh yes diatoms yes A,L A 1 2

Jacoby Creek yes no yes A,L A 1 3

Eureka Slough no no yes B,L S 2 6

First Slough no no yes B,L S 2 7

Fay Slough no no no B,L S 2 8

South Bay (west) no diatoms yes A A 3 10 The data here is mostly sufficient, occupying a new site would be more prudent.
South Bay (east) occupies an area subject to repeated Late Holocene coseismic 

Table 1. Data limitations and priorities for conducting additional paleoseismic and paleotsunami studies at site specific locations in Northern California.

Notes

The event horizons at the Crescent City marsh are poorly constrained.  There is a high 
likelihood that the marsh archives teletsunami evidence.
The data there is mostly sufficient and the lagoon was found to contain dangerous levels of 
dioxin.

Eureka Slough, First Slough and Fay slough occupy an area subject to repeated Late 
Holocene coseismic subsidence, the timing and magnitude of the associated land level 
changes is poorly understood.  This area is also occupied by critical transportation 
infrastructure and an airport protected by tidal levees.

Mad River Slough, Arcata Marsh and Jacoby Creek occupy an area subject to repeated Late 
Holocene coseismic subsidence, the timing and magnitude of the associated land level changes is 
poorly understood.  This location is also occupied by critical transportation infrastructure and a public 
water treatment facility vulnerable to relative sea-level changes.

South Bay (east) no no no B,L,N,D S 2 9
Swiss Hall yes no yes A A 3 11
Hookton Slough yes diatoms yes A A 3 13

Eel River no forminifera yes B,L,N S 1 4

The Eel river valley lies just north of the triple junction and has the potential to record paleosiesmic and 
paleotsunami evidence at the southern most Csz.  This data would be valuable in understanding how 
the southern Csz transitions to the San Andreas fault zone.

South Bay (east) occupies an area subject to repeated Late Holocene coseismic 
subsidence, the timing and magnitude of the associated land level changes is poorly 
understood.  This location is also occupied by critical transportation infrastructure and a 
community college.
The data here is mostly sufficient, occupying a new site would be more prudent.
The data here is mostly sufficient, occupying a new site would be more prudent.

1  14C limitations include: B-bulk samples of organic material were submitted for analysis; I- Inverse dates were encountered after analysis of the data; N- Not all of the disturbance events had 14C determinations; L- several or all 
event horizons have a limited number of samples to statistically verify age determinations; D-Anomalous age determination within data set; A-14C sample collection techniques and analysis meet current scientific standards.
2 Descriptive limitations include: A- Lithologic descriptions of core logs meet current scientific standards; S- Lithologic descriptions of core logs are simplified compared to modern scientific standards.
3 Scientific value of site is a subjective determination based on the specific attributes of the site including: ability to archive disturbance events, the value of the existing data, proximity to large human populations or valuable 
infrastructure,  if it spatially or temporally occupies a known or important data gap, or if the data collected at the site meets current scientific standards and does not currently need further analysis.  The sites are evaluated on 
a scale from 1-3 with 1 assigned to locations that are a top priority for further investigation and 3 being locations that do not merit further investigation at this time.

Site Evaluation and Ranking

What did we do?

+   We evaluate all 14C data associated 
with paleoseismic and paleotsunami re-
search in northern California.

+   We establish criteria to rank 14C 
samples in order to 
 1) obtain new age control for strata 
that have none
 2) obtain new age control for strata 
that have ‘bad’ ages

+   We further determine which region 
needs more coring. In addition, we 
found only some core studies incorpo-
rated biostratigraphic control. Local 
transfer functions have not yet been de-
veloped, so estimates of subdidence 
based on diatom paleoecology are not 
well constrained.

Recurrence Intervals
oldest
age ^ oldest age ^ events events RI

Std
Error R. I. RI EQ RI

reference region min max included * total ++ mean @ +/- rounded # reported $ missing %
new

Goldfinger, et. al., 2008 aCSZ 19 19 530 530 530 0 530
Goldfinger, et. al., 2008 bCSZ 480 480 480 0
Goldfinger, et. al., 2008 cCSZ 320 320 320 0
Goldfinger, et. al., 2008 dCSZ 10010 9650 38 38 251 5 250 220 0 250

Nelson, et. al., 2006 Bradley Lake 4700 4700 12 12 392 12 390 440 6 260
Kelsey, et. al., 2005 Bradley Lake 4630 4460 12 12 408 12 410 390 5 289
Witter, et. al., 2003 Coquille 6720 6500 12 12 702 45 700 580 15 311
Kelsey, et. al., 2002 Sixes 5600 5050 11 11 623 52 620 510 10 325
Carver, et. al. 1998 Crescent City 3060 2760 1, 2, 4, 5, 6 6 483 41 480 5 262
Abramson, et. al., 2007 Lagoon Creek 3440 3164 2, 4, 5, 6, 7, 8 8 324 38 320 1 284
Vick, et. al., 1988 North Bay 1568 1390 4, 5 5 308 31 310 1 258
Pritchard, et. al., 2004 North Bay 1684 1410 2, 3, 4 4 448 23 450 3 257
Valentine, 1992 North Bay 4290 4087 1, 2, 4, 6, 7, 8, 9, 10 10 371 99 370 320 4 264
Carver, et. al. 1998 Southwest Bay 1695 1542 2 2 1369 1370 8 274
Valentine, 1992 South Bay 3366 2946 1, 2, 4, 5, 6, 7, 8 8 391 25 390 320 4 260
Witter, et. al., 2002 Swiss Hall 2289 1954 2, 3, 4 4 719 71 720 6 288
Patton, et. al., 2006 South Bay 3631 3474 3, 4, 5 5 688 70 690 900 8 265
Li, 1992 Eel River 1990 1739 2, 3, 4, 5 5 452 34 450 3 281
Carver Burke, 1988 Little Salmon fault 7178 7000 1, 2, 3, 4 4 1751 271 1750 23 259
Carver Burke, 1988 Blue Lake fault 25074 24481 2, 4 4 8103 73 8100 120 261
Carver Burke, 1988 Mad River fault 12085 11415 4, 5 5 3433 400 3430 61 260

without SW 
bay mean 465 129 460

all events mean 548 366 550 494

%  number of earthquakes required to shorten RI to match marine RI (result in the next column over).
#  Recurrence Interval (RI) based on events with radiocarbon based age control.
@ Mean of clalculated Ris determined for each aged event.
++  total events at site.
* events included in RI estimate.
^  cal yrs BP, years before 1950.
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A)  Land level changes at the coast during two eathquake deformation 
cycles with different amplitude
B)  Relative sea level (RSL) changes produced by the cycles  during a period 
of no change in regional sea level
C)  A gradual rise in regional sea level during the cycles that does not include 
short term or small scale changes in local and regional sea level
D)  RSL changes at the coast resulting from the sum of figures B and C
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Figure 2. Kelsey, H.M., 2001, Active faulting associated with the southern Cascadia subduction zone 
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What is the Problem?

RI estimates for earthquakes on the 
southern Cascadia subduction zone 
are inconsistent. We evaluate the 
terrestrial record.

Terrestrial Record: what are the 
problems?

1) stratigraphy is not directly correl-
able (rely on 14C)
2) 14C ages have issues
 a) conventional vs. ams
 b) bulk samples vs.
  identifiable plant mat’l.
3) secondary evidence cannot be 
directly attributed to any particular 
source.

Marine Record: what are the prob-
lems?

1)  secondary evidence cannot be 
directly attributed to any particular 
source.

Earthquake and tsunami hazard for northern California and southern Oregon is dominated by estimates of recurrence for earthquakes on the Casca-
dia subduction zone (CSZ) and upper plate thrust faults. Site-based terrestrial paleoseismic evidence derived recurrence interval (RI) estimates are in-
consistent with the regional marine record of great earthquakes. Reconciling these differences reveals information regarding different sources or mag-
nitudes of coseismic or interseismic deformation in the southern CSZ. 

Early paleoseismic investigations utilized bulk peat for 14C age determinations and these early studies were largely reconnaissance work. All terrestrial 
data sets are compiled, evaluated, ranked, and excluded according to their paleoseismic relevance. We construct an OxCal age model to evaluate 
the discriminated 14C based space-time relations graphically and statistically. We interpret a regional timing of tectonic deformation that is consistent 
with the timing of the marine record.

Not all events are observed in each region and not all events have age control. Some regions lack cores representing the complete modern tidal el-
evation range (biasing the paleoseismic record). For example, when individual sites in the same region are combined, a more complete record of co-
seismic subsidence can be assumed, reducing the terrestrial RI to 360+-40, yet still longer than the marine RI.

We consider relative sea-level (RSL), as the relation between land-level and sea-level and we find that chronologically distinct buried soils are found in 
settings segregated by elevation. Subsidence in southern Humboldt Bay occurred in positions of higher RSL at ~1,500, ~2,200, and ~3,500 cal yrs BP. We 
pose that the RSL position does not relate to the time preceding the earthquake, but may relate to the accumulated strain at the time of the earth-
quake. RSL with a higher position would correspond with more accumulated strain in the upper plate. We evaluate the various factors that may con-
found this relation.

We also compare the estimates of subsidence for cores in locations that share the sea-level / land-level relations as today as these may be a modern 
analogue to what subsidence we might expect if the CSZ earthquake were to occur tomorrow.

Some important unknowns that are required to complete this analysis include down-core diatom paleoecologic interpretations based upon correla-
tions (transfer function) with modern biogeochemical transects, neither of which currently exist.  There also remain several buried soils that lack 14C 
age determinations.
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