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Mismatch Between Interseismic Ground Deformatfion and Paleoseismic/Paleogeodetic Observations, Humboldf Bay, susee[)S]

Northern California, Cascadia Subduction Zone

Observations made by Plafker in Chile (1960) and Alaska (1964) show that vertical deformation during earthquakes is generally opposite in sense of motion
compared to interseismic deformation. This elastic rebound theory drives estimates of potential coseismic deformation on the Cascadia subduction zone (CSZ).
Similar to other coastal marshes along the CSZ, paleoseismic investigations around Humboldt Bay reveal evidence of coseismic subsidence for the past 4 ka.

Tide gage data obtained from NOAA tide gages, as well as ‘campaign’ style tide gages, are used to infer interseismic ground deformation. Tide gage data
from Crescent City and Humboldt Bay are compared to each other and also compared to estimates of eustatic sea-level rise to estimate rates of land-level
change. Earthscope and USGS GPS permanent site data are also used to evaluate vertical interseismic deformation in this region. These rates of land-level
change are then compared to paleoseismic proxies for vertical land-level change.

Cores collected for master’s theses research at Humboldt State University were used to compile an earthquake history for the Humboldt Bay region. Some cores
in Mad River and Hookton sloughs were used to evaluate magnitudes of coseismic subsidence by comparing diatom and foraminiferid assemblages associ-
ated with lithologic contacts (paleogeodesy). Minimum estimates of paleosubsidence for earthquakes range from 0.3 to 2.6 meters.

Subtracting eustatic sea-level rise (~2.3 mm/yr, 1977-2010) from Crescent City (CC) and North Spit (NS) relative sea-level rates reveals that CC is uplifting at
~3mm/yr and NS is subsiding at ~2.5 mm/yr. GPS vertical deformation reveals similar rates of ~3 mm/yr of uplift and ~2 mm/yr of subsidence in these two loca-
tions. GPS based subsidence rates show a gradient of subsidence between Trinidad (in the north) to Cape Mendocino (in the south).

The spatial region of ongoing subsidence reveals the depth of locking of the CSZ fault (differently from previous studies, like Wang et al., 2003), but Humboldt
Bay has regions that subsided coseismically that are also subsiding interseismically. The sense of motion mismatch is probably due to at least (1) upper plate de-
formation (co- orinter-seismic) and/or (2) some process that is inconsistent with existing subduction zone models. Since the interseismic deformation is found
across multiple upper-plate structures it is probably not influenced by those faults. However, coseismic motion on these faults cannot be ruled out.

Future geodetic measurements may further reveal the region of locking on the megathrust (and provide a measure for natural hazards), but paleoseismic re-
cords and their paleogeodetic record likely better reveal the catastrophic changes we expect in the future as they are measures of coseismic changes.
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Tide gage and GPS analyses

40.9N

—»<— Syncline fold axis
<——> Anticline fold axis

—4__A Thrust fault

Available GPS Survey Data
Proposed GPS and/or Level Survey
EarthScope - PBO Continuous GPS
NOAA Tide Gage - North Spit

HSU-CeNCOOS or Wiyot Tribe
Water Quality and Depth
Proposed Tide Gage

KM

4 44> P>

40.8N

Pacific Ocean

40.7N = * OW

SN

Pl61 A 01PB

T
124.3W

sea level changes.

124.2W 124.1W

Combining available survey data and
water level data to establish a meaningful
baseline to monitor localized land and/or

Global Positioning System
(GPS) geodetic measure-
ments of tectonic ground

deformation in northern Cali-
fornia. Dashed lines desig-

nate hand drawn countours
of vertical movement for the

time period during which

these measurements were
collected. D represents re-
gions of interseismic subsid-
ence and U represents re-
gions of interseismic uplift.
Remember, coseismic defor-
martin is probably the oppo-

site sense of motion.

Crescent City, CA -0.65 +I-0.36 mmlyr

0.60 "
Data with the average seasonal Source: HOAA
cycle removed
= —[Higher 35% confidenceinterval |- — — — - - & & & & C & D f m e e m e e e e e e e e e == = 4
0.45 !
—Linear mean sea level trend
— Lower 95% confidence interval
oot -~"~"""""""""“"""" """ """~/ S, o, o oo T T T C oS s oo o s s
0IGT ———~—~~—~----------| |l N TR P Y P Rt
: !
i —— L ) LURUL LRl
& 0.00 | i ik e i3 HTR:
= I I T
ostT------"""""=""=""="=~"="=""~"t-~—~"f~-~—~—""7—-7—~"pF--"F-A-=-"4-H-""-"H-——Hl" 7
L 1 ittt ittt
L
-0.60 T T T T T T T T T T T
1900.0 19100 19200 19300 19400 18500 1960.0 19700 19800 18800 2000.0 20100
North Spit, CA 4.73 +I-1.58 mmlyr
0.60 "
Data with the average seasonal Source: HOAA
cycle removed
| _ [ Higher 95% confidence interval |- — — — — — — — L L o o o e
0.45 ;
— Linear mean sea level trend
— Lower 95% confidence interval

-0.60 T T T T T T T T T T T
1900.0 19100 18200 19300 19400 1950.0 1960.0 19700 1980.0 1990.0 2000.0 20100

NOAA tide gage data from Crescent Clty and North Spit (Humboldt
Bay). What can you conclude from these two data setse

Assuming these locations are receiving the same global sea-level
rise, tfectonics might be invoked to explain the difference in these
records.
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When North Spit and Crescent City tide gage data are differenced,
we can see that there is a difference in sense of motion, as well as a
difference in magnitude, between these two locations. This suggests
that somewhere between CC and NS, the down dip edge of the
locked zone is located. Existing research in the Humbldt Bay region
by the Humboldt Bay Vertical Reference System Working Group will
hopefully resolve these preliminary findings.
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Pattern of deformation across a Chilean-type subduction zone (Plafker, 1972) for interseismic, coseismic, and
postseismic parts of the seismic cycle. During the long duration interseismic part of the cycle, the locked
zones of the megathrust are coupled and the upper plate is carried toward the arc and down with the de-
scending oceanic plate. Compression of the backstop region above the fransition zone and the deep stable
sliding part of the megathrust generates uplift near the arc. During megathrust earthquakes, coseismic slip on
the locked zone produces uplift above the megathrust rupture and elastic relaxation and subsidence be-
tween the downdip end of rupture and the arc. Slip on upper plate thrusts can generate localized and per-
manent uplift and subsidence in the fold and thrust belt. Rapid creep accommodates the slip deficit on the
megathrust in the transition zone during the relatively short postseismic interval following the earthquake. This
rapid creep produces rapid rebound in the area of coseismic subsidence.
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Mean Sea Level Data

?
N
¢ \
$
\ ‘:
\ir'

1975

1980
1985
1990
1995
2000
2005
2010

Year

-=@-- 197879 Data  ==@= 2008 Data === Linear (197§9,2008 Data)

Mad River Slough Tidal Station

(NOAA station ID: 9418865)
NOAA collected 14 months of tide
levels at this site in 1977, 1978 and 1979.
Based on preliminary review of data 8

monthly mean sea level estimates can
be used for 1978-79.

NHE reoccupied the Mad River Site in
2008. Tide levels were referenced to
original Tidal Bench Marks used by
NOAA. NHE collected approximately 8
months of continuous tide data, which
provided 8 monthly mean sea level esti-
mates.

Not enough data to determine relative
sea level change directly from NOAA
and NHE data.

However, we can look at Mad River
Slough relative to Crescent City in same
manner as comparison of North Spit to
Crescent City.

Mad River Slough Relative to
Crescent City

‘*Mad River Slough subsides relative to

/ ‘ Crescent City at 4.2 mm/yr.

This indicates that Mad River Slough is
sinking at a rate 1.2 mm/yr less than
North Spit (5.4 mm/yr).

Mad River Slough Relative to
North Spit

*Mad River Slough subsi@&smm/yr
less than North Spit.

[his estimate is close to above rate of
1.2 mm/yr.

sThe Crescent City estimate is probably

more accurate due to length of record.
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