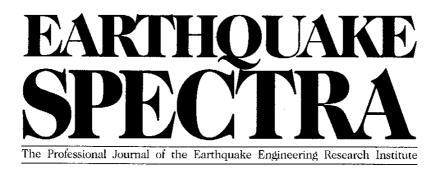
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/290461788

Tsunami Waves in Izmit Bay


Article *in* Earthquake Spectra · December 2000 DOI: 10.1193/1.1586146

CITATIONS 14	S	READS 76
15 auth	ors, including:	
4	Ahmet Cevdet Yalciner Middle East Technical University 196 PUBLICATIONS 1,661 CITATIONS SEE PROFILE	YIldız Altınok Istanbul University 64 PUBLICATIONS 754 CITATIONS SEE PROFILE
	Costas E. Synolakis University of Southern California 292 PUBLICATIONS 8,094 CITATIONS SEE PROFILE	Jose C Borrero University of Southern California 148 PUBLICATIONS 2,667 CITATIONS SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Seafloor morphology and structural properties of the coastal area between Tekirdağ and Şarköy and tsunami risk analysis View project

NearToWarn View project

SUPPLEMENT A TO VOLUME 16

Kocaeli, Turkey, Earthquake of August 17, 1999 Reconnaissance Report

TECHNICAL EDITORS T. Leslie Youd Jean-Pierre Bardet Jonathan D. Bray

This report was sponsored by the Earthquake Engineering Research Institute, the National Science Foundation, and the Federal Emergency Management Agency

Publication Number 2000-03

EARTHQUAKE SPECTRA

The Professional Journal of the Earthquake Engineering Research Institute

CONTENTS

	Preface	
	Acknowledgments	xv
*	Seismicity, Fault Rupture, and Tsunami	
	Chapter 1: Geology and Seismicity	1
	Introduction	1
	Tectonic Setting	2
	Seismological Setting	3
	Fault Rupture Mechanism	4
	Regional Geology Along the North Anatolian Fault	6
	Quaternary Geology of the Kocaeli Rupture Zone	7
	References	8
	Chapter Contributors	9
	Chapter 2: Surface Fault Rupture	. 11
	Introduction	11
	Surface Fault Rupture	11
	Rupture Length and Displacement	11
	Rupture Morphology	15
	Rupture Width	16
	Afterslip	18
	Fault Segments and Pull-Apart Basins	18
	Karamürsel Pull-Apart Basin	23
	Gölcük Pull-Apart Basin	23
	Sapanca Pull-Apart Basin	25
	Akyazi Stepover	25
	Eften Lake Stepover	26
	Pull-Apart Basin Comparison	26
	Theoretical Modeling of Pull-Apart Rupture Dynamics	26
	Effects of Surface Fault Rupture on Engineered Structures, Facilities, and Lifelines	28
	Effects of Surface Fault Rupture on Buildings and Structures	31
	Effects of Surface Fault Rupture on Lifelines	44
	Summary and Conclusions	48
	Acknowledgments	51
	References	52
	Chapter Contributors	53
	Chapter 3: Tsunami Waves in Izmit Bay	. 55
	Introduction	55
	Evidence of Tsunami Triggered by the Kocaeli Earthquake	55
	Results of Field Surveys	55
	Abnormal Sea Level Changes as Reported by Scamen	59

Historical Tsunamis in the Sea of Marmara	60
Summary and Conclusion	61
Acknowledgments	
References	
Chapter Contributors	

✤ Ground Motions

65
65
65
69
69
69
69
85
85
88
112
113
113
113

Comparison of Fault-Normal and Fault-Parallel Components	121
Directivity of Fault Rupture	123
Comparison of Intensity Parameters on Rock and Soil Sites	123
Comparison of Ground Motion Intensities from the Two Earthquakes	126
Peak Acceleration at Rock Sites	126
Discussion of Specific Records	
Polarity of the Strong Motion Records	128
Timing Issue for the Strong Motion Records	128
Gebze	
Sakarva	130
Summary	130
References	134
Appendix 6.1. Proposed timing of the accelerograms at Gebze,	
Yarimca, Izmit, and Sakarya	136
Acknowledgments	. 137
Chapter Contributors	. 137

✤ Ground Failure and Geotechnical Effects

	141
Introduction	
Coastal Subsidences and Inundation	
Coastal Failures and Liquefaction	145
Full Coastal Stability Failures	
Liquefaction and Lateral Spreading at the Bay of Izmit	148
Liquefaction and Lateral Spreading at Lake Sapanca	153
Hotel Sapanca and the South Lake Shoreline	153
Esme	156
Cases of Liquefaction and Lateral Spreading Inland, away	
from Shorelines	
Inland Landslides	159
Ground Movements and Landslides Between Akyazi and Golyaka	159
Summary	161
References	161
Chapter Contributors	
Chapter 8: Damage Patterns and Foundation Performance in Adapaz	ari 163
Introduction	163
The City of Adapazari	163
Subsurface Characteristics of Adapazari	165
Historical Seismicity of Adapazari	168
Overview of Damage from the 1999 Kocaeli Earthquake	169
Line Surveys of Structure and Foundation Performance	
Mapping Procedure	173
Survey Results: E-W Lines 1–3	176
Survey Results: N-S Line 4	176
Correlation Between Structural and Foundation Performance	
Representative Cases of Shallow Foundation Performance	1/9
Representative Cases of Shallow Foundation Performance General Building Settlement	179

Bearing Failure	
Lateral Movement	
Pile-Supported Buildings	
Conclusions	
References	
Acknowledgments	
Chapter Contributors	
Chapter 9: Performance of Improved Ground and Earth Structures	191
Introduction	
Carrefour Shopping Center	
General Site Information and Soil Conditions	
Foundation System and Soil Improvement	
Lot C Area	
Observed Field Performance During Earthquake Loading	
Ipekkagit Tissue Factory	
General Site Information and Soil Conditions	
Foundation System and Soil Improvement	
PM3 Building	
Observed Field Performance During Earthquake Loading	
Ford Plant	
General Site Information and Soil Conditions	
Foundation System and Soil Improvement	
Observed Field Performance During Earthquake Loading	
Gemlik Borcelik Steel Mill	
General Site Information and Soil Conditions	
Foundation System and Soil Improvement	
Observed Field Performance During Earthquake Loading	
Arifiye Bridge Reinforced Earth Walls	
General Site Information and Soil Conditions	
Observed Field Performance During Earthquake Loading	
Gökce Dam	222
Kirazdere Dam	223
Conclusions	224
References	224
Chapter Contributors	225
Chapter 10: Effects on Dams	227
Introduction	
Behavior of Dams	
Gökce Dam	
Kirazdere (Yuvacik) Dam	
Hasanlar Dam	
Conclusions	
Acknowledgments	
Chapter Contributors	
=F	

✤ Structures and Industrial Facilities

Chapter 11: Performance of Buildings	237
Introduction	237
Building Construction in the Region	238
Codes and Seismic Zones	240
Performance Statistics	247
Building Damage	249
Reinforced Concrete Buildings	249
Precast Concrete Buildings	270
Steel Buildings	273
Masonry Buildings	276
Adobe Buildings	
Wood Buildings	276
Discussion	278
References	279
Chapter Contributors	279
-	
Chapter 12: Damage Survey Approach to	201
Estimating Insurance Losses	201 201
Introduction	201
Estimating Shaking Intensities by Quantitative Surveys of Building Damage	202
Mapping the Kocaeli Earthquake Footprint	
Understanding the Beskat	
Conducting the Rapid Damage Survey	
Mapping the Intensities	
Valuing Insured Exposures	202
Surveying Exposures to Determine Average Loss Levels	
Generating a Preliminary Loss Estimate	
Implications and Lessons Learned	
Update on Losses and Implications for the Turkish Insurance Market	
Loss Estimation Lessons Learned	
Lessons for Global Insurance Markets	202
References	292
Acknowledgments	292 202
Authors and Contributors	
Chapter 13: Performance of Waterfront Structures	295
Introduction	
Performance of Individual Ports and Piers	296
Port of Derince	296
Petkim Facilities	301
Government Petroleum	302
Shell Oil and Trans Turk	303
Seca Paper Mill	304
Public Marina at Izmit	304
Fursan and UM Tersanesi Shipyards	305
Gölcük Naval Base	305

Igsas Fertilizer and Tupras Oil Refinery	
Rota Cement and Marmary Shipyard	
Tuzla Port	
Haydarpasa Port	
Chapter Contributors	
Chapter 14: Industrial Facilities	
Petrochemical Industry	
Tüpras Refinery	
Igsas Fertilizer Plant	
Petkim Petrochemical Plant	
British Petroleum	
Other LPG Plants	
Automotive Industry	
Hyundai Car Factory	
Toyota Car Factory	
Ford Car Factory	
Pirelli Tires	
Goodyear Tire Plant	
BriSA Tire Plant	
KordSA	
DuSA	
EnerjiSA	
BekSA	
Other Heavy Industry NUH Cement Plant	
Mannesmann Boru Steel Pipe Factory	
SEKA Paper Mill	
Pakmaya Food Processing Plant	
Philips Incandescent Bulb Factory	
Bastas Fluorescent Bulb Factory	
Habas Liquefied Gas Plant	
Citi Manufacturing Plant	
Toprak Ilic Pharmaceutical Plant	
Toprak Saglik Paper Products Plant	
Camlica Soft Drink	
Cap Textile	
NUH Beton	
Summary	
Chapter Contributors	350
Chapter 15: Building Code Enforcement Prospects:	
The Failure of Public Policy	
Introduction	
Building Code Provisions for Earthquake Resistance Before 1975	
The 1975 Code	
The 1998 Code	
Planning Issues	
Enforcement Prospects	
Summary: Deficiencies of Building Construction Supervision	
The Proposed System: Basic Objectives and Tools	
The troposed system, basic objectives and tools	

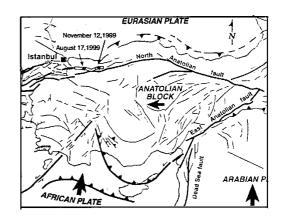
Proposed Planning System	
Building Construction Supervision System	
Institutional Strengthening at the Municipal Level	
Conclusions	
References	
Chapter Contributor	
Appendix 15.1	

✤ Lifelines

Telecommunications Performance	
Introduction	
Water Supply	
Adapazari	
Izmit Water Project	
Yalova-Gölcük System	
Lessons Learned	
Gas Delivery Systems	
Lessons Learned	
Electrical Power System	
Damage to Power Generation	
Transmission System Damage	
Recovery of the National Electric Transmission System	
Damage and Restoration of Electric Distribution	
Lessons Learned	
Telecommunications	
Failure Modes	
Lessons Learned	
Concluding Remarks	
References	
Acknowledgments	
Chapter Contributors	
-	
apter 17: Performance of Transportation Systems	
After the 1999 Kocaeli Earthquake	
Overview	
Railroads	403
Performance of Railway Tracks, Bridges, and Tunnels	
Emergency Response and Recovery of the Railroads	
Lessons Learned and Recommendations for the Railroads	
Airports	408
Earthquake Performance of Airports	408
Observations and Recommendations for Airports	409
Highways Operations	409
Performance of Highways Operations	409
Recommendations for Highways	409
Acknowledgments	409
Authors and Reviewers	410

Chapter 18: Impact on Highway Structures	411
Overview	411
Typical Bridge Design in Turkey	412
Structural Collapses	
Arifiye Road Overcrossing Bridge	
Collapsed "Local Bridge" near Arifiye	
Akyazi Toll Plaza: Canopy Collapse	
Severe Damage to Other Toll Plazas	416
Moderate Structural Damage	
TEM Sakarya River Viaduct	
TEM Bridge East of Arifiye Road Overcrossing	418
D-100 Bridges	
TEM Roadway and Embankment Damage	419
Minor Damage and Undamaged Bridges	422
TEM Bolu Tunnel and Viaducts	
Bolu Tunnel	432
Bolu Viaducts	433
Lessons for Highway Designers from the Kocaeli Earthquake	434
Acknowledgments	
Authors	

✤ Societal Impacts


Chapter 19: Emergency Response and Societal Impacts	439
Introduction	439
Emergency Response	440
Search and Rescue	440
Emergency Response	442
Public Services	442
Media Response	
Predictions and Warning	
Lifeline Disruption and Response	
Damage Assessment	
Societal Impacts	
Casualties and Injuries	447
Mental Health Services	
Displaced Persons	
Economic and Social Effects	450
Conclusions and Recommendations for Further Research	450
Acknowledgments	
References	
Chapter Author	
Appendix 19.1. Preliminary Turkish Press Coverage of the Earthquake	453
Appendix 19.2 International Print Media Coverage for August and September 1	999 456

Section 1

Seismicity, Fault Rupture, and Tsunami

✤ Geology and Seismicity

- ✤ Surface Fault Rupture
- ✤ Tsunami Waves in Izmit Bay

EARTHQUAKE SPECTRA

The Professional Journal of the Earthquake Engineering Research Institute

Chapter 3: Tsunami Waves in Izmit Bay	55
Introduction	55
Evidence of Tsunami Triggered by the Kocaeli Earthquake	55
Results of Field Surveys	55
Abnormal Sea Level Changes as Reported by Seamen	59
Historical Tsunamis in the Sea of Marmara	
Summary and Conclusion	
Acknowledgments	
References	
Chapter Contributors	
-	

3 Tsunami Waves in Izmit Bay

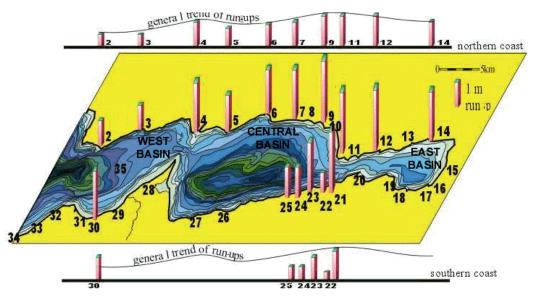
INTRODUCTION

Following the Kocaeli earthquake of August 17, 1999, unusual water wave motions affected the coastline of Izmit Bay. The effects of these water waves were systematically documented by field surveys a few days after the earthquake, within the limited time window available for finding and interpreting the watermarks from small tsunamis in densely populated coastlines. Here, the results of the tsunami field surveys after the Kocaeli earthquake are summarized, and historical tsunamis in the region are briefly reviewed.

EVIDENCE OF TSUNAMI TRIGGERED BY THE KOCAELI EARTHQUAKE

Tsunamis are long water waves generated by geophysical events of the seafloor, landslides, volcanoes, and asteroid impacts (Prager et al. 1999). The understanding of tsunami generation mechanisms remains an unresolved scientific problem. Even when seafloor bathymetry is measured following an earthquake, the bathymetry prior to the event is seldom known with enough resolution to infer the actual seafloor displacement that triggered tsunamis. Geophysicists rely on field survey data of inundation heights and inland penetration distances and on eyewitness observations about the characteristics of the leading wave (Tadepalli and Synolakis 1994 and 1996) and arrival times for attempting to identify the source motion.

In the days following the Kocaeli earthquake, contemporaneous press accounts described extensive flooding of coastlines of Izmit Bay but made no mention of tsunamis. Given the predominantly strike-slip nature of the fault rupture system, there was an urgent need to determine whether a tsunami was generated or whether the flooding was attributable solely to tectonic subsidence. Four separate surveys were performed in the affected area around Izmit Bay and the Sea of Marmara. The first took place between August 22 and August 30, 1999, and was followed by three more in September and October 1999.


RESULTS OF FIELD SURVEYS

Tsunami run-up measurements were taken using watermarks and seaborne debris (see figure 3.1). Run-up refers to the elevation difference between the most inland penetration point of the wave and the shoreline, at the time of the event (Synolakis et al. 1995; Kawata et al. 1999). When it is impossible to measure run-up directly, the elevation difference between watermarks and the shoreline is used as a substitute. The two are seldom identical, and the former is usually smaller than the latter. During the Kocaeli field survey, more than one hundred eyewitnesses were interviewed. The surveys were performed at the locations shown in figure 3.2 and listed in table 3.1 (Altinok et al. 1999). Overall the tsunami damage was small but quite extensive in area.

As shown in figure 3.2, along the northern coast of Izmit Bay, in the central basin between

Figure 3.1. The tsunami wave left behind seaborne debris (seaweed) hanging on the staircase railing at Kirazliyali (location 8 in figure 3.2).

Figure 3.2. Bathymetry of Izmit Bay, locations of tsunami field surveys, and measured values of run-up heights (Altinok et al. 1999).

Table 3.1. Data compiled from eyewitness accounts and interpreted measurements ofrun-up heights, inundation, and receding distances of the tsunami after theKocaeli Earthquake (Altinok et. al. 1999; and Yalciner et. al. 1999).Note: * refers to the inundation distance due to coastal subsidence.

No	Locality	Run-up (m)	Inundation Distance (m)	Receding Distance (m)
2	Darica	1+	4	
3	Eskihisar	1+	15	
4	Dilovası	2		
5	Tavsancilar	1.5	25,30	
6	Hereke	1.80	30	
7	Sirinyali	1, 2.5	15	
8	Kirazliyalı	2.5		
9	Yarımca	2.5	35, 60	15, 20
10	Körfez	2.5	100	15
11	Tüpras	2.5		
12	Derince Port	2-2.5		
13	Çene Suyu	2	60	80
14	Izmit, Marina		25	40
17	Seymen		50	2
19	Kavaklı		300*	
20	Golcuk			
21	Degirmendere	2.5	35	150
22	Halidere	0.8	60	15
23	Ulasli	2	5+	
24	Eregli (Güzelyalı)	1.25	4	15
25	Defne Mahallesi	1.5	4	
26	Karamürsel	1.25		
27	Kaytazdere		15	
28	Hersek		30+	
29	Havuzdere			
30	Topçular	1+		
35	Offshore Topçular			

Hereke and Tupras industrial plant, the tsunami had the form of a leading depression wave. These waves, which were first described by Tadepalli and Synolakis (1994 and 1995), caused transient exposure of the seafloor near the shoreline. It is now common knowledge that most near-shore tsunamis manifest themselves as leading depression waves, also referred to as LDNs. The run-up heights ranged from 1.5 to 2.6 meters and decreased to high-water levels within 4 km east of Tupras and 10 km west of Hereke. The first wave arrived along the north coast a few minutes after the earthquake and had a period of about one minute. The sea withdrew during the earthquake in the port at Tavsancilar, and the elevation wave that followed flooded up to 25 meters inland and invaded the first floor of houses (see location 5 in figure 3.2). Henceforth the location numbers refer to the vertical bars in figure 3.2.

The hardest hit areas were Sirinyali, Kirazliyali, Yarimca, Korfez, and Tupras (locations 7 to 11). The basements of waterfront apartments were flooded, and the sea rose to the second floor of some houses near Kirazliyali. The wave carried mussels into houses and damaged doors and windows. At the Yarimca Yachting Club (location 9), the sea first receded 15 to 20 meters, and the following elevation wave lifted up a motor yacht and moved it 50 meters inland. A second wave inundated the same shore to 30 meters inland. At Korfez, the inundation distance ranged up to 35 meters. There were clear watermarks on the wall of the police station in Hereke (location 6) and at the Denizkosku restaurant in Korfez. Eyewitnesses reported that the wave arrived at Kirazliyali from the southeast and at Korfez from the south. At the Izmit Marina (location 14), the sea receded about 40 meters. At Seymen (location 17), the waves were observed to come from the northwest.

Between Degirmendere and Güzelyali, run-up heights were measured in the range of 0.8 to 2.5 meters and decreased to high-water levels within 6 km east of Gölcük and 10 km west of Güzelyali (location 24). The tsunami was observed as a leading depression wave to the west of Kavakli

Figure 3.3. At Cinarlik Park near Degirmendere (location 21 in figure 3.2.), a hotel, restaurants, shops, and trees along the shoreline subsided into the sea, at the place where the seawater changes to a lighter color. The divers on the boat were looking for a car dragged into the sea by the wave.

Figure 3.4. A view from the sea of the subsided coastal area at Kavakli, west of Gölcük (location 20 in figure 3.2).

(location 19, figure 3.3) along the southern coast up to Güzelyali. The wave was noticed immediately after the earthquake. As shown in figure 3.4, there was significant coastal subsidence in addition to slumping of Cinarlik Park near Degirmendere (location 21). The subsided area extended 250 meters along shore and 70 meters perpendicular to shore and included two piers, a hotel, a restaurant, a coffeehouse, and 14 large trees. The sea was observed receding about 150 meters in less than 120 seconds near Degirmendere. When the sea came back, it flooded up to 35 meters inland, as indicated by the mussels and dead fish left in this inundation area.

At Halidere (location 22), the sea receded 10 to 15 meters and flooded up to 50 meters inland, as inferred from the depositions of sea moss and jellyfish. At Ulasli (location 23), the sea receded and inundated at least 5 meters. Seven people were swept into the sea when a waterfront restaurant subsided; only two survived. The building of the Ulasli municipality and its open-air parking area near the coast sank into the sea, together with cars, construction equipment, and boats (Altinok 1999). In the port at Güzelyali, the sea withdrew and boats were stranded outside the breakwater at the onset of the earthquake. The inundation distance was about 5 meters. At Karamürsel (location 26), the sea receded; sea moss and dead fish were found along a 70– to 100-meter zone at the Aksa Textile Industrial Complex at Kilic Delta, west of location 30.

At Küçükçekmece Inlet, Atakoy Marina, Yenikapi, Bosporus, Bostanci, Pendik, Tuzla, Yalova, Çinarcik, Bandirma, and Erdek, strong currents and abnormal water-level changes were also reported, but of much longer periods. In Atakoy Marina, abnormal long-period water-level changes and strong currents were observed by the staff of the marina until 6:00 A.M. the following morning.

ABNORMAL SEA LEVEL CHANGES AS REPORTED BY SEAMEN

Along the northern coasts of Izmit Bay, at Dilovasi, Korfez, Derince, and Izmit (locations 4, 10, 12, and 14, respectively), several boat captains reported abnormal sea level changes.

At the onset of the earthquake at Dilovasi Port (location 4), the 2,000 gross-ton (GT) tanker *Nazan*, with a draft of 4.5 meters, along with *Empros* and *Bora Mete*, suddenly descended and then was uplifted as much as 3 meters. At the port of Derince (location 12), loading cranes derailed due to horizontal and vertical movements of the caisson as large as 40 cm. Two large, heavy, and powerful tugboats, boarded alongside a ship moored at port, descended violently on their bows as a result of the LDN and were then uplifted 2 to 2.5 meters.

The boat *Korfez-1* was moored at a fisherman's wharf at Korfez at around 3:00 A.M. on August 17, 1999. The LDN caused the boat to hit the seafloor, and then *Korfez-1* drifted back to the sea. In less than half a minute, the boat rose with the rising water and drifted toward a fisherman's wharf. From this observation, the period of the wave (time distance between crest to crest) was inferred to be less than one minute. In Izmit Marina (location 14), the moored boats dropped by more than 2 meters before recovering.

Along the southern coast of Izmit Bay at Degirmendere, Halidere, and Ulasli, the captains experienced violent wave motions. The 375 GT 50-meter-long passenger ship *Ataturk* was moored to the Degirmendere Pier, next to the 300 GT 36-meter-long fishing boat *Kircillioglu-4*. The captain of the fishing boat *Abonoz*, which was nearby, reported that *Kircillioglu-4* was uplifted more than 10 meters relative to *Ataturk* and sank, while *Ataturk* was dragged to shallower depth. At the Halidere pier, the 349 GT 4-meter-draft *Tatlisu Ship* fell down more than 1 meter below the pier, hit bottom, and damaged her shaft and propeller. At the Ulasli port, the ship *Kirat* broke her ropes off and fell down below the pier. All these short-term near-shore events, which depend on local seafloor bathymetry and marina geometry, are an indication of the water pandemonium that followed the earthquake.

A less credible but nonetheless interesting report was from the captain of the ferryboat *Okmeydani*, which was sailing at 1 knot within 90-meter-deep water from Topcular to Eskihisar (locations 30 and 3), 2.6 miles from Topcular. The captain reported seeing a 30- to 40-meter-high wave about 100 meters away from her bow. He observed that the wave progressed toward Eskihisar (Altinok et al. 1999).

HISTORICAL TSUNAMIS IN THE SEA OF MARMARA

The tsunami waves observed after the Kocaeli earthquake are not the first ones to have occurred in the Sea of Marmara; ten historical tsunamis were reported between A.D. 975 and A.D. 1962 (Ambraseys 1962). The Osmanli (Ottoman) official archives (Kuran and Yalciner 1993) report that the September 14, 1509, earthquake triggered a tsunami that flooded the regions behind the city walls of Istanbul near Yenikapi and Galata (located to the west and east of Bosporus, respectively) and the residential areas in Hereke, near the northern coast of Izmit Bay. The July, 10, 1894, earthquake generated a tsunami that affected Prince's Islands west of Bosporus and the coasts from Bakirköy to Kartal (north of the Sea of Marmara). The passenger ship *Eser-i Cedit* was dragged to shallower depths, and many boats of various sizes were thrown up onto the land near Büyük Island. The sea receded about 50 meters at Cam Harbor of Heybeli Island (Kuran and Yalciner 1993). The September 18, 1963, earthquake (M=6.1), which was widely felt over a 70,000 km² area, triggered a tsunami. Sea waves washed over the seawalls and caused panic at Bandirma, an important port city 120 km away from the epicenter near the south coast of the Sea of Marmara. Local residents vacated port facilities, businesses, and coffeehouses close to the shoreline. The same tsunami reportedly deposited seaborne debris far beyond the high-tide line along the coast of Mudanya Bay (Kuran and Yalciner 1993). Based on historical references, Altinok and Ersoy (1996) and Altinok, Ersoy and Yalciner (1999) reported tsunamis in Izmit Bay and its vicinity to have occurred in A.D. 120 or 128, 325, 358, 447, 488, 553, 555, 557, 715, 740, 1754, April 1878, May 1878, and September 18, 1963.

SUMMARY AND CONCLUSION

Based on eyewitness reports and run-up and inundation measurements, the tsunami generated after the Kocaeli earthquake had a period shorter than a minute and arrived a few minutes after the earthquake on the northern coasts and about a minute after on the southern coasts. The sea receded first along northern and southern coastlines of Izmit Bay. This information provides valuable information on the generation mechanism of the tsunami waves, for it implies that there was a large subsidence near and/or at the shoreline, possibly caused by a stepover between two strands of the strike-slip fault system. The fairly consistent reports of approximately one-minute wave periods rule out bay oscillations as the source of the flooding and indicate that regions of subsidence may have been localized (Alpar 1999; Guneysu 1999). Tsunami waves may have also been generated by sediment slumping within the bay, in addition to tectonic subsidence. Local peaks in tsunami run-up along the northern and southern shorelines of the middle basin hint that these slumps may have generated waves near Degirmendere.

The Kocaeli earthquake generated only small tsunami waves that caused no extensive damage to coastal structures. The tsunami hit close to highly populated areas, however. This is a cause of substantial concern, as there are hundreds of houses, hotels, and cafés within tens of meters of the coastline. Future earthquake hazard mitigation programs in Izmit Bay and the Sea of Marmara need to consider the hazards of tsunami waves, which may result from coseismic seafloor motion, underwater landslides, slumps, and subsidence.

ACKNOWLEDGMENTS

Profs. James Dolan and Jean-Pierre Bardet of the University of Southern California and engineers Martin Eskijian and John Freikman of the California State Lands Commission are acknowledged for their contributions in the fieldwork, the latter particularly for their help in assessing the damage to port facilities. This study was supported by Prof. Nobuo Shuto, Dr. Cliff Astill of the National Science Foundation of the United States, TUBITAK (YDABCAG-60, INTAG-527), JICA, GNDT (Gruppo Nazionale Difesa dai Terremoti), Istanbul University Research Fund (AFP 1268/050599), the University of Southern California, the Middle East Technical University, Tohoku University's Disaster Control Research Center, the University of Bologna, and the General Directorate of Disaster Affairs, Turkey. KISKA A.S. civil engineer Salih Saygili and the Municipality of Degirmendere are also acknowledged for their valuable assistance.

REFERENCES

- Alpar B. 1999. Underwater signatures of 1999 Kocaeli earthquake. *Turkish Journal of Marine Sciences* (Institute of Marine Sciences and Management, University of Istanbul) 5 (3):111–129.
- Altinok, Y., and S. Ersoy. 1996. Tsunamis which affected Turkish coasts. Istanbul University, Journal of Earth Sciences 10:111–126.
- Altinok, Y., S. Ersoy, and A. C. Yalciner. 1999. Turkey and its vicinity, tsunami catalogue. Interim Report (in Turkish). Basic Research Project, University of Istanbul Research Fund, Project No. 1268/050599. Altinok, Y., B. Alpar, S. Ersoy, and A. C. Yalciner. 1999. Tsunami generation of the Kocaeli earthquake (August 17, 1999) in the Yzmit Bay: Coastal observations, bathymetry, and seismic data. *Turkish Journal of Marine Sciences* (Institute of Marine Sciences and Management, University of Istanbul) 5 (3):130–144.
- Ambraseys, N. N. 1962. Data for the investigation of the seismic sea waves in the eastern Mediterranean. Bulletin of the Seismological Society of America 52:895–913.

- Guneysu C. 1999. Bathymetry of Imzit Bay. *Turkish Journal of Marine Sciences* (Institute of Marine Sciences and Management, University of Istanbul) 5 (3):167–171.
- Kawata, Y., B. C. Benson, J. Borrero, H. Davies, W. de Lange, F. Imamura, and C. E. Synolakis. 1999. Tsunami in Papua New Guinea. EOS, Transactions American Geophysical Union 80 (9):101–105.
- Kuran, U., and A. C. Yalçiner. 1993. Crack propagations, earthquakes, and tsunamis in the vicinity of Anatolia. In *Tsunamis in the World*, edited by Stefano Tinti, 159–175. Advances in Natural and Technological Hazards Research series. Hingham, Mass.: Kluwer Academic Publishers. Prager, E., K. Hutton, S. Williams, and C. E. Synolakis. 1999. *Furious Earth: The science of earthquakes, volcanoes, and tsunamis*. New York: McGraw Hill.
- Synolakis, C. E., F. Imamura, Y. Tsuji, S. Matsutomi, B. Tinti, B. Cook, and M. Ushman. 1995. Damage, conditions of East Java tsunami of 1994 analyzed. *Eos, Transactions, American Geophysical Union* 76 (26):257, 261–262.
- Tadepalli, S., and C. E. Synolakis. 1994. The run-up of N-waves. *Proceedings of the Royal Society* (London), series A, vol. 445: 99–112.
- Tadepalli, S., and C. E. Synolakis. 1996. Model for the leading waves of tsunamis. *Physical Review Letters* 77:2141–2145.
- Yalciner, A. C. 1999. August, 17, 1999, Izmit tsunami (in Turkish). Science and Techniques (Popular science magazine of Turkish Scientific and Technical Research Council (October 1999).
- Yalciner, A. C., C. E. Synolakis, J. Borrero, Y. Altinok, P. Watts, F. Imamura, U. Kuran, S. Ersoy, U. Kanoglu, and S. Tinti. 1999. Tsunami generation in Izmit Bay by the Yzmit earthquake. In *Proceedings ITU-IAHS International Conference on the Kocaeli Earthquake*, 17 August 1999, 217–221. Istanbul: Istanbul Technical University.

CHAPTER CONTRIBUTORS

Coordinators

Ahmet Cevdet Yalciner Middle East Technical University and University of Southern California

> Yildiz Altinok Istanbul University Costas E. Synolakis University of Southern California

Other Contributors

Jose Borrero, University of Southern California Fumihiko Imamura, Tohoku University Sukru Ersoy, Istanbul University

Ugur Kuran, General Directorate of Disaster Affairs, Ankara

Stefano Tinti, University of Bologna

Martin Eskijian, California State Lands Commission

John Freikman, California State Lands Commission

Yalcin Yuksel, Yildiz Technical, Istanbul

Bedri Alpar, University of Istanbul

Philip Watts, Applied Fluids Engineering Company

Utku Kanoglu, Applied Sciences Laboratory, Inc.

Jean-Pierre Bardet, University of Southern California